Zhang T, Guay M
Dept. of Chem. Eng., Queen's Univ., Kingston, Ont., Canada.
IEEE Trans Syst Man Cybern B Cybern. 2003;33(1):143-9. doi: 10.1109/TSMCB.2003.808187.
An adaptive controller is developed for a class of second-order nonlinear dynamic systems with input nonlinearities using artificial neural networks (ANN). The unknown input nonlinearities are continuous and monotone and satisfy a sector constraint. In contrast to conventional Lyapunov-based design techniques, an alternative Lyapunov function, which depends on both system states and control input variable, is used for the development of a control law and a learning algorithm. The proposed adaptive controller guarantees the stability of the closed-loop system and convergence of the output tracking error to an adjustable neighbour of the origin.
针对一类具有输入非线性的二阶非线性动态系统,利用人工神经网络(ANN)开发了一种自适应控制器。未知的输入非线性是连续且单调的,并满足扇形约束。与传统的基于李雅普诺夫的设计技术不同,一种依赖于系统状态和控制输入变量的替代李雅普诺夫函数被用于控制律和学习算法的开发。所提出的自适应控制器保证了闭环系统的稳定性以及输出跟踪误差收敛到原点的一个可调邻域。