Suppr超能文献

基于模糊推理和自适应量化的图像子带编码

Image subband coding using fuzzy inference and adaptive quantization.

作者信息

Hsieh Ming-Shing, Tseng Din-Chang

机构信息

Inst. of Comput. Sci. & Inf. Eng., Nat. Central Univ., Chung-li, Taiwan.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2003;33(3):509-13. doi: 10.1109/TSMCB.2003.811131.

Abstract

Wavelet image decomposition generates a hierarchical data structure to represent an image. Recently, a new class of image compression algorithms has been developed for exploiting dependencies between the hierarchical wavelet coefficients using zerotrees. This paper deals with a fuzzy inference filter for image entropy coding by choosing significant coefficients and zerotree roots in the higher frequency wavelet subbands. Moreover, an adaptive quantization is proposed to improve the coding performance. Evaluating with the standard images, the proposed approaches are comparable or superior to most state-of-the-art coders. Based on the fuzzy energy judgment, the proposed approaches can achieve an excellent performance on the combination applications of image compression and watermarking.

摘要

小波图像分解生成一种分层数据结构来表示图像。最近,已经开发出一类新的图像压缩算法,用于利用零树来利用分层小波系数之间的相关性。本文通过在高频小波子带中选择重要系数和零树根来处理用于图像熵编码的模糊推理滤波器。此外,还提出了一种自适应量化方法来提高编码性能。通过对标准图像进行评估,所提出的方法与大多数最先进的编码器相当或更优。基于模糊能量判断,所提出的方法在图像压缩和水印的组合应用中可以实现优异的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验