Suppr超能文献

微寄生虫的随机灭绝与传播模式的选择

Stochastic extinction and the selection of the transmission mode in microparasites.

作者信息

Bahi-Jaber Narges, Fouchet David, Pontier Dominique

机构信息

Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS, Université de Lyon, Université Lyon 1, 43 boulevard 11 novembre 1918, 69622 Villeurbanne Cedex, France.

出版信息

J R Soc Interface. 2008 Sep 6;5(26):1031-9. doi: 10.1098/rsif.2007.1326.

Abstract

Stochastic fluctuations in the transmission process of microparasites generate a risk of parasite extinction that cannot be assessed by deterministic models, especially in host populations of small size. While this risk of extinction represents a strong selection pressure for microparasites, it is usually not clearly separated from the deterministic ones. We suggest here that this stochastic selection pressure can affect the selection of the transmission mode of microparasites. To avoid extinction, parasites should maximize their inter-population transmission to ensure frequent reintroductions. Since the types of contacts may differ if congeners belong to the same or distinct populations, strains that are mainly transmitted through inter-population contacts might be selected. To examine this assumption, we analyse the issue of the competition between two strains differing in their transmission mode using a stochastic metapopulation model in which hosts may display different behaviours inside and outside their populations. We show that stochastic selection pressures may drive parasite evolution towards a transmission mode that maximizes the persistence of the parasite. We study the conditions under which stochastic selection pressures may surpass the deterministic ones. Our results are illustrated by the cases of feline immunodeficiency virus in cats and of sexually transmitted diseases in mammals.

摘要

微寄生虫传播过程中的随机波动会产生寄生虫灭绝风险,而确定性模型无法评估这种风险,尤其是在小规模宿主种群中。虽然这种灭绝风险对微寄生虫而言是强大的选择压力,但它通常与确定性选择压力没有明确区分开来。我们在此表明,这种随机选择压力会影响微寄生虫传播模式的选择。为避免灭绝,寄生虫应最大化种群间传播,以确保频繁的重新引入。由于同属内的个体如果属于同一或不同种群,接触类型可能不同,那么主要通过种群间接触传播的菌株可能会被选择。为检验这一假设,我们使用一个随机集合种群模型分析了两种传播模式不同的菌株之间的竞争问题,在该模型中宿主在其种群内外可能表现出不同行为。我们表明,随机选择压力可能会驱使寄生虫进化至一种能使寄生虫持续性最大化的传播模式。我们研究了随机选择压力可能超过确定性选择压力的条件。猫科动物中的猫免疫缺陷病毒以及哺乳动物中的性传播疾病案例阐释了我们的研究结果。

相似文献

1
Stochastic extinction and the selection of the transmission mode in microparasites.
J R Soc Interface. 2008 Sep 6;5(26):1031-9. doi: 10.1098/rsif.2007.1326.
2
Trade-offs and the evolution of virulence of microparasites: do details matter?
Theor Popul Biol. 2003 Sep;64(2):211-20. doi: 10.1016/s0040-5809(03)00063-7.
4
Mathematical models of parasite responses to host immune defences.
Parasitology. 1997;115 Suppl:S155-67. doi: 10.1017/s003118209700200x.
5
The coevolution of parasites with host-acquired immunity and the evolution of sex.
Evolution. 2000 Aug;54(4):1142-56. doi: 10.1111/j.0014-3820.2000.tb00550.x.
6
Deterministic extinction effect of parasites on host populations.
J Math Biol. 2003 Jan;46(1):17-30. doi: 10.1007/s00285-002-0165-7.
7
Fitness of parasites: pathology and selection.
Int J Parasitol. 1997 Jan;27(1):1-10. doi: 10.1016/s0020-7519(96)00168-3.
8
The unavoidable costs and unexpected benefits of parasitism: population and metapopulation models of parasite-mediated competition.
J Theor Biol. 2008 Jan 21;250(2):244-56. doi: 10.1016/j.jtbi.2007.10.004. Epub 2007 Oct 9.
9
Coinfection and the evolution of parasite virulence.
Proc Biol Sci. 1995 Aug 22;261(1361):209-15. doi: 10.1098/rspb.1995.0138.
10
Within-host evolution and virulence in microparasites.
J Theor Biol. 2006 Jul 21;241(2):402-9. doi: 10.1016/j.jtbi.2005.12.011. Epub 2006 Jan 27.

引用本文的文献

1
Modeling the potential impact of host population survival on the evolution of M. tuberculosis latency.
PLoS One. 2014 Aug 26;9(8):e105721. doi: 10.1371/journal.pone.0105721. eCollection 2014.
2
Natural simian immunodeficiency virus transmission in mandrills: a family affair?
Proc Biol Sci. 2012 Sep 7;279(1742):3426-35. doi: 10.1098/rspb.2012.0963. Epub 2012 Jun 6.
4
When domestic cat (Felis silvestris catus) population structures interact with their viruses.
C R Biol. 2009 Feb-Mar;332(2-3):321-8. doi: 10.1016/j.crvi.2008.07.012. Epub 2008 Nov 28.

本文引用的文献

1
Response to intruders in female rabbit colonies is related to sex of intruder and rank of residents.
Behav Processes. 1991 Aug;24(2):111-22. doi: 10.1016/0376-6357(91)90003-I.
2
Allocation to sexual versus nonsexual disease transmission.
Am Nat. 1998 Jan;151(1):29-45. doi: 10.1086/286100.
3
Stochasticity generates an evolutionary instability for infectious disease.
Ecol Lett. 2007 Sep;10(9):818-27. doi: 10.1111/j.1461-0248.2007.01078.x.
4
Utility of R0 as a predictor of disease invasion in structured populations.
J R Soc Interface. 2007 Apr 22;4(13):315-24. doi: 10.1098/rsif.2006.0185.
5
Superspreading and the effect of individual variation on disease emergence.
Nature. 2005 Nov 17;438(7066):355-9. doi: 10.1038/nature04153.
6
7
Sexually transmitted diseases in animals.
Parasitol Today. 1992 May;8(5):159-66. doi: 10.1016/0169-4758(92)90010-y.
8
A general theory for the evolutionary dynamics of virulence.
Am Nat. 2004 Apr;163(4):E40-63. doi: 10.1086/382548. Epub 2004 Apr 2.
9
Large shifts in pathogen virulence relate to host population structure.
Science. 2004 Feb 6;303(5659):842-4. doi: 10.1126/science.1088542.
10
Disease evolution on networks: the role of contact structure.
Proc Biol Sci. 2003 Apr 7;270(1516):699-708. doi: 10.1098/rspb.2002.2305.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验