Goel Kashish, Gupta Nidhi, Misra Anoop, Poddar Pawan, Pandey Ravindra M, Vikram Naval K, Wasir Jasjeet S
Department of Medicine, Maulana Azad Medical College, New Delhi, India.
Obesity (Silver Spring). 2008 Feb;16(2):451-6. doi: 10.1038/oby.2007.55.
To develop accurate and reliable equations from simple anthropometric parameters that would predict percentage of total body fat (%BF), total abdominal fat (TAF), subcutaneous abdominal adipose tissue (SCAT), and intra-abdominal adipose tissue (IAAT) with a fair degree of accuracy.
Anthropometry, %BF by dual-energy X-ray absorptiometry (DXA) in 171 healthy subjects (95 men and 76 women) and TAF, IAAT, and SCAT by single slice magnetic resonance imaging (MRI) at L3-4 intervertebral level in 100 healthy subjects were measured. Mean age and BMI were 32.2 years and 22.9 kg/m(2), respectively. Multiple regression analysis was used on the training data set (70%) to develop equations, by taking anthropometric and demographic variables as potential predictors. Predicted equations were applied on validation data set (30%).
Multiple regression analysis revealed the best equation for predicting %BF to be: %BF = 42.42 + 0.003 x age (years) + 7.04 x gender (M = 1, F = 2) + 0.42 x triceps skinfold (mm) + 0.29 x waist circumference (cm) + 0.22 [corrected] x weight (kg) - 0.42 x height (cm) (R (2) = 86.4%). The most precise predictive equation for estimating IAAT was: IAAT (mm(2)) = -238.7 + 16.9 x age (years) + 934.18 x gender (M = 1, F = 2) + 578.09 x BMI (kg/m(2)) - 441.06 x hip circumference (cm) + 434.2 x waist circumference (cm) (R (2) = 52.1%). SCAT was best predicted by: SCAT (mm(2)) = -49,376.4 - 17.15 x age (years) + 1,016.5 x gender (M = 1, F = 2) +783.3 x BMI (kg/m(2)) + 466 x hip circumference (cm) (R (2) = 67.1).
We present predictive equations to quantify body fat and abdominal adipose tissue sub-compartments in healthy Asian Indians. These equations could be used for clinical and research purposes.
从简单的人体测量参数中开发出准确可靠的方程,以较高的准确度预测体脂百分比(%BF)、腹部总脂肪(TAF)、腹部皮下脂肪组织(SCAT)和腹部内脏脂肪组织(IAAT)。
对171名健康受试者(95名男性和76名女性)进行人体测量,采用双能X线吸收法(DXA)测量%BF;对100名健康受试者在L3 - 4椎间水平采用单层磁共振成像(MRI)测量TAF、IAAT和SCAT。受试者的平均年龄和体重指数分别为32.2岁和22.9kg/m²。在训练数据集(70%)上进行多元回归分析以建立方程,将人体测量和人口统计学变量作为潜在预测因子。将预测方程应用于验证数据集(30%)。
多元回归分析显示预测%BF的最佳方程为:%BF = 42.42 + 0.003×年龄(岁) + 7.04×性别(男性 = 1,女性 = 2) + 0.42×肱三头肌皮褶厚度(mm) + 0.29×腰围(cm) + 0.22[校正后]×体重(kg) - 0.42×身高(cm)(R² = 86.4%)。估计IAAT的最精确预测方程为:IAAT(mm²) = -238.7 + 16.9×年龄(岁) + 934.18×性别(男性 = 1,女性 = 2) + 578.09×体重指数(kg/m²) - 441.06×臀围(cm) + 434.2×腰围(cm)(R² = 52.1%)。预测SCAT的最佳方程为:SCAT(mm²) = -49376.4 - 17.15×年龄(岁) + 1016.5×性别(男性 = 1,女性 = 2) + 783.3×体重指数(kg/m²) + 466×臀围(cm)(R² = 67.1)。
我们提出了用于量化健康亚洲印度人体脂和腹部脂肪组织亚组分的预测方程。这些方程可用于临床和研究目的。