Bailly Marc, Blaise Mickaël, Roy Hervé, Deniziak Marzanna, Lorber Bernard, Birck Catherine, Becker Hubert D, Kern Daniel
UPR 9002 Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 Rue René Descartes and Université Louis Pasteur, F-67084 Strasbourg Cedex, France.
Methods. 2008 Feb;44(2):146-63. doi: 10.1016/j.ymeth.2007.11.012.
In some living organisms the 20 aa-tRNA species participating in protein synthesis are not charged by a complete set of 20 aminoacyl-tRNA synthetases. In prokaryotes, the deficiency of asparaginyl- and/or glutaminyl-tRNA synthetases is compensated by another aminoacyl-tRNA synthetase of relaxed specificity that mischarges the orphan tRNA and by an enzyme that converts the amino acid into that homologous to the tRNA. In Thermus thermophilus Asn-tRNA(Asn) is formed indirectly via a two-step pathway whereby tRNA(Asn) is mischarged with Asp that will subsequently be amidated into Asn by an amidotransferase. The non-discriminating aspartyl-tRNA synthetase, the trimeric GatCAB tRNA-dependent amidotransferase and the tRNA(Asn) promoting this pathway assemble into a ribonucleoprotein particle termed transamidosome. This article deals with the methods and techniques employed to clone the genes encoding the enzymes and the tRNA involved in this pathway, to express them in Escherichia coli, to isolate them on a large scale, and to transcribe and produce mg quantities of pure tRNA(Asn)in vitro. The approaches designed especially for this system include (i) clustering of the ORFs encoding the subunits of the heterotrimeric GatCAB that are sprinkled in the genome into an artificial operon, and (ii) the self-cleavage of the tRNA(Asn) transcript starting with U in 5' position through fusion with a hammerhead ribozyme. Further, the crystallization of the free enzymes is described and the characterization of their assembly with tRNA(Asn) into a ribonucleoprotein particle, as well as the investigation of the catalytic mechanism of Asn-tRNA(Asn) formation by the complex are reported.
在一些生物体内,参与蛋白质合成的20种氨酰-tRNA并非由全套20种氨酰-tRNA合成酶进行加载。在原核生物中,天冬酰胺酰-tRNA合成酶和/或谷氨酰胺酰-tRNA合成酶的缺失可由另一种特异性较宽松的氨酰-tRNA合成酶来弥补,该酶会错误加载孤儿tRNA,此外还可由一种将氨基酸转化为与tRNA同源氨基酸的酶来弥补。在嗜热栖热菌中,天冬酰胺酰-tRNA(Asn)是通过两步途径间接形成的,即tRNA(Asn)被错误加载天冬氨酸,随后天冬氨酸会被一种酰胺转移酶酰胺化形成天冬酰胺。非特异性天冬氨酰-tRNA合成酶、三聚体GatCAB tRNA依赖性酰胺转移酶以及促进此途径的tRNA(Asn)组装成一种核糖核蛋白颗粒,称为转酰胺体。本文介绍了用于克隆参与此途径的酶和tRNA的编码基因、在大肠杆菌中表达这些基因、大规模分离它们以及在体外转录并产生毫克量纯tRNA(Asn)所采用的方法和技术。专门为此系统设计的方法包括:(i)将散布在基因组中的异源三聚体GatCAB亚基的编码开放阅读框(ORF)聚集成一个人工操纵子;(ii)通过与锤头状核酶融合,使5'端起始于U的tRNA(Asn)转录本进行自我切割。此外,还描述了游离酶的结晶过程,以及它们与tRNA(Asn)组装成核糖核蛋白颗粒的特性,同时报道了对该复合物形成天冬酰胺酰-tRNA(Asn)催化机制的研究。