Temme Karsten, Salis Howard, Tullman-Ercek Danielle, Levskaya Anselm, Hong Soon-Ho, Voigt Christopher A
UCSF/UCB Joint Graduate Group in Bioengineering, San Francisco, CA, USA.
J Mol Biol. 2008 Mar 14;377(1):47-61. doi: 10.1016/j.jmb.2007.12.044. Epub 2007 Dec 28.
Bacterial pathogenesis requires the precise spatial and temporal control of gene expression, the dynamics of which are controlled by regulatory networks. A network encoded within Salmonella Pathogenicity Island 1 controls the expression of a type III protein secretion system involved in the invasion of host cells. The dynamics of this network are measured in single cells using promoter-green fluorescent protein (gfp) reporters and flow cytometry. During induction, there is a temporal order of gene expression, with transcriptional inputs turning on first, followed by structural and effector genes. The promoters show varying stochastic properties, where graded inputs are converted into all-or-none and hybrid responses. The relaxation dynamics are measured by shifting cells from inducing to noninducing conditions and by measuring fluorescence decay. The gfp expressed from promoters controlling the transcriptional inputs (hilC and hilD) and structural genes (prgH) decay exponentially, with a characteristic time of 50-55 min. In contrast, the gfp expressed from a promoter controlling the expression of effectors (sicA) persists for 110+/-9 min. This promoter is controlled by a genetic circuit, formed by a transcription factor (InvF), a chaperone (SicA), and a secreted protein (SipC), that regulates effector expression in response to the secretion capacity of the cell. A mathematical model of this circuit demonstrates that the delay is due to a split positive feedback loop. This model is tested in a DeltasicA knockout strain, where sicA is complemented with and without the feedback loop. The delay is eliminated when the feedback loop is deleted. Furthermore, a robustness analysis of the model predicts that the delay time can be tuned by changing the affinity of SicA:InvF multimers for an operator in the sicA promoter. This prediction is used to construct a targeted library, which contains mutants with both longer and shorter delays. This combination of theory and experiments provides a platform for predicting how genetic perturbations lead to changes in the global dynamics of a regulatory network.
细菌致病机制需要对基因表达进行精确的时空控制,而基因表达的动态过程由调控网络控制。沙门氏菌致病岛1中编码的一个网络控制着参与宿主细胞侵袭的III型蛋白分泌系统的表达。利用启动子 - 绿色荧光蛋白(gfp)报告基因和流式细胞术在单细胞中测量该网络的动态变化。在诱导过程中,基因表达存在时间顺序,转录输入首先开启,随后是结构基因和效应器基因。启动子表现出不同的随机特性,分级输入会转化为全或无反应和混合反应。通过将细胞从诱导条件转移到非诱导条件并测量荧光衰减来测量弛豫动力学。从控制转录输入(hilC和hilD)和结构基因(prgH)的启动子表达的gfp呈指数衰减,特征时间为50 - 55分钟。相比之下,从控制效应器表达(sicA)的启动子表达的gfp持续110±9分钟。该启动子由一个遗传回路控制,该回路由转录因子(InvF)、伴侣蛋白(SicA)和分泌蛋白(SipC)组成,它根据细胞的分泌能力调节效应器的表达。该回路的数学模型表明,延迟是由于一个分裂正反馈回路。在一个缺失SicA的敲除菌株中对该模型进行了测试,其中sicA在有和没有反馈回路的情况下进行互补。当反馈回路被删除时,延迟被消除。此外,该模型的稳健性分析预测,可以通过改变SicA:InvF多聚体对sicA启动子中一个操纵子的亲和力来调节延迟时间。这一预测被用于构建一个靶向文库,其中包含具有更长和更短延迟的突变体。理论与实验的这种结合为预测基因扰动如何导致调控网络全局动态变化提供了一个平台。