Suppr超能文献

通过非天然信号序列将蛋白质定位到1,2 - 丙二醇利用微区室是由一个共同的疏水基序介导的。

Localization of proteins to the 1,2-propanediol utilization microcompartment by non-native signal sequences is mediated by a common hydrophobic motif.

作者信息

Jakobson Christopher M, Kim Edward Y, Slininger Marilyn F, Chien Alex, Tullman-Ercek Danielle

机构信息

From the Department of Chemical and Biomolecular Engineering and.

Biophysics Graduate Group, University of California, Berkeley, California 94720.

出版信息

J Biol Chem. 2015 Oct 2;290(40):24519-33. doi: 10.1074/jbc.M115.651919. Epub 2015 Aug 17.

Abstract

Various bacteria localize metabolic pathways to proteinaceous organelles known as bacterial microcompartments (MCPs), enabling the metabolism of carbon sources to enhance survival and pathogenicity in the gut. There is considerable interest in exploiting bacterial MCPs for metabolic engineering applications, but little is known about the interactions between MCP signal sequences and the protein shells of different MCP systems. We found that the N-terminal sequences from the ethanolamine utilization (Eut) and glycyl radical-generating protein MCPs are able to target reporter proteins to the 1,2-propanediol utilization (Pdu) MCP, and that this localization is mediated by a conserved hydrophobic residue motif. Recapitulation of this motif by the addition of a single amino acid conferred targeting function on an N-terminal sequence from the ethanol utilization MCP system that previously did not act as a Pdu signal sequence. Moreover, the Pdu-localized signal sequences competed with native Pdu targeting sequences for encapsulation in the Pdu MCP. Salmonella enterica natively possesses both the Pdu and Eut operons, and our results suggest that Eut proteins might be localized to the Pdu MCP in vivo. We further demonstrate that S. enterica LT2 retained the ability to grow on 1,2-propanediol as the sole carbon source when a Pdu enzyme was replaced with its Eut homolog. Although the relevance of this finding to the native system remains to be explored, we show that the Pdu-localized signal sequences described herein allow control over the ratio of heterologous proteins encapsulated within Pdu MCPs.

摘要

多种细菌将代谢途径定位到称为细菌微区室(MCPs)的蛋白质细胞器中,使碳源代谢得以进行,从而增强在肠道中的生存能力和致病性。人们对利用细菌MCPs进行代谢工程应用有着浓厚兴趣,但对于MCP信号序列与不同MCP系统的蛋白质外壳之间的相互作用却知之甚少。我们发现,来自乙醇胺利用(Eut)和产甘氨酰自由基蛋白MCPs的N端序列能够将报告蛋白靶向到1,2 - 丙二醇利用(Pdu)MCP,并且这种定位是由一个保守的疏水残基基序介导的。通过添加单个氨基酸重现该基序赋予了来自乙醇利用MCP系统的一个N端序列靶向功能,该序列之前并非Pdu信号序列。此外,定位于Pdu的信号序列与天然Pdu靶向序列竞争被封装到Pdu MCP中。肠炎沙门氏菌天然同时拥有Pdu和Eut操纵子,我们的结果表明Eut蛋白在体内可能定位于Pdu MCP。我们进一步证明,当用其Eut同源物替换Pdu酶时,肠炎沙门氏菌LT2保留了以1,2 - 丙二醇作为唯一碳源生长的能力。尽管这一发现与天然系统的相关性仍有待探索,但我们表明本文所述的定位于Pdu的信号序列能够控制封装在Pdu MCP中的异源蛋白比例。

相似文献

4
Engineering transcriptional regulation to control Pdu microcompartment formation.
PLoS One. 2014 Nov 26;9(11):e113814. doi: 10.1371/journal.pone.0113814. eCollection 2014.
5
The PduL Phosphotransacylase Is Used To Recycle Coenzyme A within the Pdu Microcompartment.
J Bacteriol. 2015 Jul;197(14):2392-9. doi: 10.1128/JB.00056-15. Epub 2015 May 11.
7
Short N-terminal sequences package proteins into bacterial microcompartments.
Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7509-14. doi: 10.1073/pnas.0913199107. Epub 2010 Mar 22.
8
Evidence for Improved Encapsulated Pathway Behavior in a Bacterial Microcompartment through Shell Protein Engineering.
ACS Synth Biol. 2017 Oct 20;6(10):1880-1891. doi: 10.1021/acssynbio.7b00042. Epub 2017 Jun 21.

引用本文的文献

2
Controlled Enzyme Cargo Loading in Engineered Bacterial Microcompartment Shells.
Biochemistry. 2025 Mar 18;64(6):1285-1292. doi: 10.1021/acs.biochem.4c00709. Epub 2025 Mar 5.
3
Engineering CO-fixing modules in Escherichia coli via efficient assembly of cyanobacterial Rubisco and carboxysomes.
Plant Commun. 2025 Mar 10;6(3):101217. doi: 10.1016/j.xplc.2024.101217. Epub 2024 Dec 6.
6
Microbial Fermentation of Polyethylene Terephthalate (PET) Plastic Waste for the Production of Chemicals or Electricity.
Angew Chem Int Ed Engl. 2022 Nov 7;61(45):e202211057. doi: 10.1002/anie.202211057. Epub 2022 Oct 10.
8
Chemical probing provides insight into the native assembly state of a bacterial microcompartment.
Structure. 2022 Apr 7;30(4):537-550.e5. doi: 10.1016/j.str.2022.02.002. Epub 2022 Feb 24.
9
Complex structure reveals CcmM and CcmN form a heterotrimeric adaptor in β-carboxysome.
Protein Sci. 2021 Aug;30(8):1566-1576. doi: 10.1002/pro.4090. Epub 2021 May 8.
10
Engineering spatiotemporal organization and dynamics in synthetic cells.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 May;13(3):e1685. doi: 10.1002/wnan.1685. Epub 2020 Nov 21.

本文引用的文献

1
Bacterial microcompartment assembly: The key role of encapsulation peptides.
Commun Integr Biol. 2015 Jun 23;8(3):e1039755. doi: 10.1080/19420889.2015.1039755. eCollection 2015 May-Jun.
2
JPred4: a protein secondary structure prediction server.
Nucleic Acids Res. 2015 Jul 1;43(W1):W389-94. doi: 10.1093/nar/gkv332. Epub 2015 Apr 16.
3
Selective molecular transport through the protein shell of a bacterial microcompartment organelle.
Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):2990-5. doi: 10.1073/pnas.1423672112. Epub 2015 Feb 23.
4
Exploring bacterial organelle interactomes: a model of the protein-protein interaction network in the Pdu microcompartment.
PLoS Comput Biol. 2015 Feb 3;11(2):e1004067. doi: 10.1371/journal.pcbi.1004067. eCollection 2015 Feb.
5
Structure of a bacterial microcompartment shell protein bound to a cobalamin cofactor.
Acta Crystallogr F Struct Biol Commun. 2014 Dec 1;70(Pt 12):1584-90. doi: 10.1107/S2053230X1402158X. Epub 2014 Nov 14.
6
Bacterial microcompartments and the modular construction of microbial metabolism.
Trends Microbiol. 2015 Jan;23(1):22-34. doi: 10.1016/j.tim.2014.10.003. Epub 2014 Nov 14.
7
Engineering transcriptional regulation to control Pdu microcompartment formation.
PLoS One. 2014 Nov 26;9(11):e113814. doi: 10.1371/journal.pone.0113814. eCollection 2014.
8
A taxonomy of bacterial microcompartment loci constructed by a novel scoring method.
PLoS Comput Biol. 2014 Oct 23;10(10):e1003898. doi: 10.1371/journal.pcbi.1003898. eCollection 2014 Oct.
9
In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner.
Nucleic Acids Res. 2014 Aug;42(14):9493-503. doi: 10.1093/nar/gku617. Epub 2014 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验