Barabas Orsolya, Ronning Donald R, Guynet Catherine, Hickman Alison Burgess, Ton-Hoang Bao, Chandler Michael, Dyda Fred
Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Cell. 2008 Jan 25;132(2):208-20. doi: 10.1016/j.cell.2007.12.029.
The smallest known DNA transposases are those from the IS200/IS605 family. Here we show how the interplay of protein and DNA activates TnpA, the Helicobacter pylori IS608 transposase, for catalysis. First, transposon end binding causes a conformational change that aligns catalytically important protein residues within the active site. Subsequent precise cleavage at the left and right ends, the steps that liberate the transposon from its donor site, does not involve a site-specific DNA-binding domain. Rather, cleavage site recognition occurs by complementary base pairing with a TnpA-bound subterminal transposon DNA segment. Thus, the enzyme active site is constructed from elements of both protein and DNA, reminiscent of the interdependence of protein and RNA in the ribosome. Our structural results explain why the transposon ends are asymmetric and how the transposon selects a target site for integration, and they allow us to propose a molecular model for the entire transposition reaction.
已知最小的DNA转座酶来自IS200/IS605家族。在此,我们展示了蛋白质与DNA的相互作用如何激活幽门螺杆菌IS608转座酶TnpA以进行催化。首先,转座子末端结合会引起构象变化,使活性位点内具有催化重要性的蛋白质残基排列整齐。随后在左端和右端进行精确切割,即从供体位点释放转座子的步骤,并不涉及位点特异性DNA结合结构域。相反,切割位点识别是通过与TnpA结合的亚末端转座子DNA片段进行互补碱基配对来实现的。因此,酶活性位点由蛋白质和DNA的元件构成,这让人联想到核糖体中蛋白质与RNA的相互依存关系。我们的结构结果解释了转座子末端为何不对称以及转座子如何选择整合的靶位点,并且使我们能够提出整个转座反应的分子模型。