Suppr超能文献

一种用于实现联想记忆的新型连续时间神经网络。

A novel continuous-time neural network for realizing associative memory.

作者信息

Tao Q, Fang T, Qiao H

机构信息

Hefei Institute of Intelligent Machines, Academia Sinica, Heifei, China.

出版信息

IEEE Trans Neural Netw. 2001;12(2):418-23. doi: 10.1109/72.914536.

Abstract

A novel neural network is proposed in this paper for realizing associative memory. The main advantage of the neural network is that each prototype pattern is stored if and only if as an asymptotically stable equilibrium point. Furthermore, the basin of attraction of each desired memory pattern is distributed reasonably (in the Hamming distance sense), and an equilibrium point that is not asymptotically stable is really the state that cannot be recognized. The proposed network also has a high storage as well as the capability of learning and forgetting, and all its components can be implemented. The network considered is a very simple linear system with a projection on a closed convex set spanned by the prototype patterns. The advanced performance of the proposed network is demonstrated by means of simulation of a numerical example.

摘要

本文提出了一种用于实现联想记忆的新型神经网络。该神经网络的主要优点是,当且仅当每个原型模式作为渐近稳定平衡点时才会被存储。此外,每个期望记忆模式的吸引域分布合理(在汉明距离意义上),并且一个非渐近稳定的平衡点实际上是无法被识别的状态。所提出的网络还具有高存储能力以及学习和遗忘能力,并且其所有组件都可以实现。所考虑的网络是一个非常简单的线性系统,在由原型模式所张成的闭凸集上有投影。通过一个数值例子的仿真展示了所提出网络的先进性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验