Anguita D, Boni A, Ridella S
Dept. of Biophys. and Electron. Eng., Univ. of Genova, Genoa, Italy.
IEEE Trans Neural Netw. 2003;14(5):993-1009. doi: 10.1109/TNN.2003.816033.
In this paper, we propose a digital architecture for support vector machine (SVM) learning and discuss its implementation on a field programmable gate array (FPGA). We analyze briefly the quantization effects on the performance of the SVM in classification problems to show its robustness, in the feedforward phase, respect to fixed-point math implementations; then, we address the problem of SVM learning. The architecture described here makes use of a new algorithm for SVM learning which is less sensitive to quantization errors respect to the solution appeared so far in the literature. The algorithm is composed of two parts: the first one exploits a recurrent network for finding the parameters of the SVM; the second one uses a bisection process for computing the threshold. The architecture implementing the algorithm is described in detail and mapped on a real current-generation FPGA (Xilinx Virtex II). Its effectiveness is then tested on a channel equalization problem, where real-time performances are of paramount importance.
在本文中,我们提出了一种用于支持向量机(SVM)学习的数字架构,并讨论其在现场可编程门阵列(FPGA)上的实现。我们简要分析了量化对SVM在分类问题中性能的影响,以展示其在前馈阶段相对于定点数学实现的鲁棒性;然后,我们解决SVM学习的问题。这里描述的架构使用了一种新的SVM学习算法,该算法相对于目前文献中出现的解决方案对量化误差不太敏感。该算法由两部分组成:第一部分利用循环网络来寻找SVM的参数;第二部分使用二分法过程来计算阈值。详细描述了实现该算法的架构,并将其映射到当前一代的真实FPGA(赛灵思Virtex II)上。然后在一个信道均衡问题上测试其有效性,在该问题中实时性能至关重要。