Milev M, Hristov M
Design Autom. Group, Texas Instruments Inc., Tucson, AZ, USA.
IEEE Trans Neural Netw. 2003;14(5):1187-200. doi: 10.1109/TNN.2003.816369.
In real-life applications of multilayer neural networks, the scale of integration, processing speed, and manufacturability are of key importance. A simple analog-signal synapse model is implemented on a standard 0.35 /spl mu/m CMOS process requiring no floating-gate capability. A neural-matrix of 2176 analog current-mode synapses arranged in eight layers of 16 neurons with 16 inputs each is constructed for the purpose of a fingerprint feature extraction application. Synapse weights are stored on the analog storage capacitors, and synapse nonlinearity with respect to weight is investigated. The capability of the synapse to operate in feedforward and learning modes is studied and demonstrated. The effect of the synapse's inherent quadratic nonlinearity on learning convergence and on the optimization of vector direction is analyzed. Transistor-level analog simulations verify the hardware circuit. System-level MatLab simulations verify the synapse mathematical model. The conclusion reached is that the proposed implementation is very suitable for large-scale artificial neural networks - especially if on-chip integration with other products on a standard CMOS process is required.
在多层神经网络的实际应用中,集成规模、处理速度和可制造性至关重要。在不需要浮栅功能的标准0.35μm CMOS工艺上实现了一个简单的模拟信号突触模型。为了指纹特征提取应用,构建了一个由2176个模拟电流模式突触组成的神经矩阵,该矩阵排列成八层,每层有16个神经元,每个神经元有16个输入。突触权重存储在模拟存储电容器上,并研究了突触相对于权重的非线性。研究并展示了突触在前馈和学习模式下运行的能力。分析了突触固有的二次非线性对学习收敛和向量方向优化的影响。晶体管级模拟验证了硬件电路。系统级MatLab模拟验证了突触数学模型。得出的结论是,所提出的实现方式非常适合大规模人工神经网络——特别是在需要与标准CMOS工艺上的其他产品进行片上集成的情况下。