Suppr超能文献

0.8 /spl mu/m CMOS implementation of weighted-order statistic image filter based on cellular neural network architecture.

作者信息

Kowalski J

机构信息

Inst. of Electron., Tech. Univ. of Lodz, Poland.

出版信息

IEEE Trans Neural Netw. 2003;14(5):1366-74. doi: 10.1109/TNN.2003.816384.

Abstract

In this paper, a very large scale integration chip of an analog image weighted-order statistic (WOS) filter based on cellular neural network (CNN) architecture for real-time applications is described. The chip has been implemented in CMOS AMS 0.8 /spl mu/m technology. CNN-based filter consists of feedforward nonlinear template B operating within the window of 3 /spl times/ 3 pixels around the central pixel being filtered. The feedforward nonlinear CNN coefficients have been realized using programmable nonlinear coupler circuits. The WOS filter chip allows for processing of images with 300 pixels horizontal resolution. The resolution can be increased by cascading of the chips. Experimental results of basic circuit building blocks measurements are presented. Functional tests of the chip have been performed using a special test setup for PAL composite video signal processing. Using the setup real images have been filtered by WOS filter chip under test.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验