Suppr超能文献

多重集典型相关分析与多光谱、真正多时相遥感数据。

Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data.

作者信息

Nielsen Allan Aasbjerg

机构信息

Informatics and Math., Tech. Univ. Denmark, Lyngby.

出版信息

IEEE Trans Image Process. 2002;11(3):293-305. doi: 10.1109/83.988962.

Abstract

This paper describes two- and multiset canonical correlations analysis (CCA) for data fusion, multisource, multiset, or multitemporal exploratory data analysis. These techniques transform multivariate multiset data into new orthogonal variables called canonical variates (CVs) which, when applied in remote sensing, exhibit ever-decreasing similarity (as expressed by correlation measures) over sets consisting of 1) spectral variables at fixed points in time (R-mode analysis), or 2) temporal variables with fixed wavelengths (T-mode analysis). The CVs are invariant to linear and affine transformations of the original variables within sets which means, for example, that the R-mode CVs are insensitive to changes over time in offset and gain in a measuring device. In a case study, CVs are calculated from Landsat Thematic Mapper (TM) data with six spectral bands over six consecutive years. Both Rand T-mode CVs clearly exhibit the desired characteristic: they show maximum similarity for the low-order canonical variates and minimum similarity for the high-order canonical variates. These characteristics are seen both visually and in objective measures. The results from the multiset CCA R- and T-mode analyses are very different. This difference is ascribed to the noise structure in the data. The CCA methods are related to partial least squares (PLS) methods. This paper very briefly describes multiset CCA-based multiset PLS. Also, the CCA methods can be applied as multivariate extensions to empirical orthogonal functions (EOF) techniques. Multiset CCA is well-suited for inclusion in geographical information systems (GIS).

摘要

本文描述了用于数据融合、多源、多集或多时间序列探索性数据分析的二元和多集典型相关分析(CCA)。这些技术将多元多集数据转换为称为典型变量(CV)的新正交变量,当应用于遥感时,这些变量在由以下组成的集合上呈现出不断降低的相似性(用相关度量表示):1)固定时间点的光谱变量(R 模式分析),或 2)固定波长的时间变量(T 模式分析)。典型变量对于集合内原始变量的线性和仿射变换是不变的,这意味着,例如,R 模式典型变量对测量设备中偏移和增益随时间的变化不敏感。在一个案例研究中,从连续六年的陆地卫星专题制图仪(TM)数据的六个光谱波段计算典型变量。R 模式和 T 模式典型变量都清楚地呈现出所需的特征:它们对低阶典型变量显示出最大相似性,对高阶典型变量显示出最小相似性。这些特征在视觉上和客观度量中都能看到。多集 CCA 的 R 模式和 T 模式分析结果非常不同。这种差异归因于数据中的噪声结构。典型相关分析方法与偏最小二乘法(PLS)有关。本文非常简要地描述了基于多集 CCA 的多集 PLS。此外,典型相关分析方法可以作为多元扩展应用于经验正交函数(EOF)技术。多集 CCA 非常适合纳入地理信息系统(GIS)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验