Vision Laboratory, Department of Physics, University of Antwerp, 2020 Antwerp, Belgium.
IEEE Trans Image Process. 2002;11(5):568-75. doi: 10.1109/TIP.2002.1006403.
In this paper, a new wavelet representation for multivalued images is presented. The idea for this representation is based on the first fundamental form that provides a local measure for the contrast of a multivalued image. In this paper, this concept is extended toward multiscale fundamental forms using the dyadic wavelet transform of Mallat. The multiscale fundamental forms provide a local measure for the contrast of a multivalued image at different scales. The representation allows for a multiscale edge description of multivalued images. A variety of applications is presented, including multispectral image fusion, color image enhancement and multivalued image noise filtering. In an experimental section, the presented techniques are compared to single valued and/or single scale algorithms that were previously described in the literature. The techniques, based on the new representation are demonstrated to outperform the others.
本文提出了一种新的多值图像小波表示方法。这种表示方法的思想基于第一基本形式,它提供了多值图像对比度的局部度量。在本文中,该概念通过 Mallat 的二进小波变换扩展到多尺度基本形式。多尺度基本形式提供了在不同尺度下多值图像对比度的局部度量。该表示方法允许对多值图像进行多尺度边缘描述。本文还提出了多种应用,包括多光谱图像融合、彩色图像增强和多值图像噪声滤波。在实验部分,将所提出的技术与以前文献中描述的单值和/或单尺度算法进行了比较。基于新表示的技术被证明优于其他技术。