Suppr超能文献

自动图像方向检测。

Automatic image orientation detection.

机构信息

Agilent Technologies, Palo Alto, CA 94303-0867, USA.

出版信息

IEEE Trans Image Process. 2002;11(7):746-55. doi: 10.1109/TIP.2002.801590.

Abstract

We present an algorithm for automatic image orientation estimation using a Bayesian learning framework. We demonstrate that a small codebook (the optimal size of codebook is selected using a modified MDL criterion) extracted from a learning vector quantizer (LVQ) can be used to estimate the class-conditional densities of the observed features needed for the Bayesian methodology. We further show how principal component analysis (PCA) and linear discriminant analysis (LDA) can be used as a feature extraction mechanism to remove redundancies in the high-dimensional feature vectors used for classification. The proposed method is compared with four different commonly used classifiers, namely k-nearest neighbor, support vector machine (SVM), a mixture of Gaussians, and hierarchical discriminating regression (HDR) tree. Experiments on a database of 16 344 images have shown that our proposed algorithm achieves an accuracy of approximately 98% on the training set and over 97% on an independent test set. A slight improvement in classification accuracy is achieved by employing classifier combination techniques.

摘要

我们提出了一种使用贝叶斯学习框架进行自动图像方向估计的算法。我们证明,从小型代码本(使用修改后的 MDL 准则选择最佳代码本大小)中提取的学习矢量量化器(LVQ)可用于估计贝叶斯方法所需的观察特征的类条件密度。我们进一步展示了主成分分析(PCA)和线性判别分析(LDA)如何用作特征提取机制,以去除用于分类的高维特征向量中的冗余。将所提出的方法与四种不同的常用分类器(即 k-最近邻、支持向量机(SVM)、混合高斯模型和分层判别回归(HDR)树)进行了比较。在包含 16344 张图像的数据库上的实验表明,我们提出的算法在训练集上的准确率约为 98%,在独立测试集上的准确率超过 97%。通过采用分类器组合技术,分类准确性略有提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验