Suppr超能文献

基于内容的索引图像分类。

Image classification for content-based indexing.

机构信息

Agilent Technologies, Palo Alto, CA 94303-0867, USA.

出版信息

IEEE Trans Image Process. 2001;10(1):117-30. doi: 10.1109/83.892448.

Abstract

Grouping images into (semantically) meaningful categories using low-level visual features is a challenging and important problem in content-based image retrieval. Using binary Bayesian classifiers, we attempt to capture high-level concepts from low-level image features under the constraint that the test image does belong to one of the classes. Specifically, we consider the hierarchical classification of vacation images; at the highest level, images are classified as indoor or outdoor; outdoor images are further classified as city or landscape; finally, a subset of landscape images is classified into sunset, forest, and mountain classes. We demonstrate that a small vector quantizer (whose optimal size is selected using a modified MDL criterion) can be used to model the class-conditional densities of the features, required by the Bayesian methodology. The classifiers have been designed and evaluated on a database of 6931 vacation photographs. Our system achieved a classification accuracy of 90.5% for indoor/outdoor, 95.3% for city/landscape, 96.6% for sunset/forest and mountain, and 96% for forest/mountain classification problems. We further develop a learning method to incrementally train the classifiers as additional data become available. We also show preliminary results for feature reduction using clustering techniques. Our goal is to combine multiple two-class classifiers into a single hierarchical classifier.

摘要

使用低级视觉特征将图像分为(语义上)有意义的类别是基于内容的图像检索中的一个具有挑战性和重要的问题。我们使用二进制贝叶斯分类器,尝试在测试图像必须属于某一类的约束下,从低级图像特征中获取高级概念。具体来说,我们考虑度假图像的分层分类;在最高级别,图像分为室内或室外;室外图像进一步分为城市或风景;最后,风景图像的一个子集分为日落、森林和山脉类。我们证明了一个小的矢量量化器(其最佳大小使用修改后的 MDL 准则选择)可用于建模贝叶斯方法所需的特征的条件密度。分类器已在 6931 张度假照片的数据库上进行了设计和评估。我们的系统在室内/室外分类中达到了 90.5%的分类准确性,在城市/风景分类中达到了 95.3%,在日落/森林和山脉分类中达到了 96.6%,在森林/山脉分类中达到了 96%。我们进一步开发了一种学习方法,以便随着更多数据的可用,逐步训练分类器。我们还展示了使用聚类技术进行特征减少的初步结果。我们的目标是将多个二类分类器组合成一个单一的分层分类器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验