McKinsey & Company, Chicago, IL 60610, USA.
IEEE Trans Image Process. 2002;11(7):756-70. doi: 10.1109/TIP.2002.801586.
We introduce an adaptive wavelet graph image model applicable to Bayesian tomographic reconstruction and other problems with nonlocal observations. The proposed model captures coarse-to-fine scale dependencies in the wavelet tree by modeling the conditional distribution of wavelet coefficients given overlapping windows of scaling coefficients containing coarse scale information. This results in a graph dependency structure which is more general than a quadtree, enabling the model to produce smooth estimates even for simple wavelet bases such as the Haar basis. The inter-scale dependencies of the wavelet graph model are specified using a spatially nonhomogeneous Gaussian distribution with parameters at each scale and location. The parameters of this distribution are selected adaptively using nonlinear classification of coarse scale data. The nonlinear adaptation mechanism is based on a set of training images. In conjunction with the wavelet graph model, we present a computationally efficient multiresolution image reconstruction algorithm. This algorithm is based on iterative Bayesian space domain optimization using scale recursive updates of the wavelet graph prior model. In contrast to performing the optimization over the wavelet coefficients, the space domain formulation facilitates enforcement of pixel positivity constraints. Results indicate that the proposed framework can improve reconstruction quality over fixed resolution Bayesian methods.
我们引入了一种自适应的小波图图像模型,适用于贝叶斯层析重建和其他具有非局部观测的问题。所提出的模型通过对包含粗尺度信息的尺度系数重叠窗口的小波系数的条件分布进行建模,从而捕获了小波树中的粗到细的尺度依赖性。这导致了一种比四叉树更通用的图依赖结构,使模型即使对于简单的小波基(如 Haar 基)也能产生平滑的估计。小波图模型的跨尺度依赖关系使用在每个尺度和位置处的具有参数的空间非均匀高斯分布来指定。该分布的参数使用粗尺度数据的非线性分类来自适应选择。非线性自适应机制基于一组训练图像。结合小波图模型,我们提出了一种计算高效的多分辨率图像重建算法。该算法基于使用小波图先验模型的尺度递归更新的迭代贝叶斯空域优化。与在小波系数上执行优化相比,空域公式有利于强制执行像素正性约束。结果表明,所提出的框架可以提高重建质量,优于固定分辨率的贝叶斯方法。