Zhou Jian, Senhadji Lotfi, Coatrieux Jean-Louis, Luo Limin
LTSI, Laboratoire Traitement du Signal et de l'Image INSERM : U642 Université de Rennes I Campus de Beaulieu, 263 Avenue du Général Leclerc - CS 74205 - 35042 Rennes Cedex,FR.
IEEE Trans Nucl Sci. 2009 Feb;56(1):116-128. doi: 10.1109/TNS.2008.2009445.
The present work describes a Bayesian maximum a posteriori (MAP) method using a statistical multiscale wavelet prior model. Rather than using the orthogonal discrete wavelet transform (DWT), this prior is built on the translation invariant wavelet transform (TIWT). The statistical modeling of wavelet coefficients relies on the generalized Gaussian distribution. Image reconstruction is performed in spatial domain with a fast block sequential iteration algorithm. We study theoretically the TIWT MAP method by analyzing the Hessian of the prior function to provide some insights on noise and resolution properties of image reconstruction. We adapt the key concept of local shift invariance and explore how the TIWT MAP algorithm behaves with different scales. It is also shown that larger support wavelet filters do not offer better performance in contrast recovery studies. These theoretical developments are confirmed through simulation studies. The results show that the proposed method is more attractive than other MAP methods using either the conventional Gibbs prior or the DWT-based wavelet prior.
本研究描述了一种使用统计多尺度小波先验模型的贝叶斯最大后验(MAP)方法。该先验不是基于正交离散小波变换(DWT),而是建立在平移不变小波变换(TIWT)之上。小波系数的统计建模依赖于广义高斯分布。图像重建在空间域中使用快速块顺序迭代算法进行。我们通过分析先验函数的海森矩阵从理论上研究TIWT MAP方法,以深入了解图像重建的噪声和分辨率特性。我们采用局部平移不变性的关键概念,并探索TIWT MAP算法在不同尺度下的表现。对比恢复研究还表明,更大支撑的小波滤波器并不能提供更好的性能。这些理论进展通过模拟研究得到了证实。结果表明,所提出的方法比使用传统吉布斯先验或基于DWT的小波先验的其他MAP方法更具吸引力。