Suppr超能文献

用于运动学冗余机器人局部关节扭矩优化的两种循环神经网络。

Two recurrent neural networks for local joint torque optimization of kinematically redundant manipulators.

作者信息

Tang W S, Wang J

机构信息

Dept. of Mech. & Autom. Eng., Chinese Univ. of Hong Kong, Shatin.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2000;30(1):120-8. doi: 10.1109/3477.826952.

Abstract

This paper presents two neural network approaches to real-time joint torque optimization for kinematically redundant manipulators. Two recurrent neural networks are proposed for determining the minimum driving joint torques of redundant manipulators for the eases without and with taking the joint torque limits into consideration, respectively. The first neural network is called the Lagrangian network and the second one is called the primal-dual network. In both neural-network-based computation schemes, while the desired accelerations of the end-effector for a specific task are given to the neural networks as their inputs, the signals of the minimum driving joint torques are generated as their outputs to drive the manipulator arm. Both proposed recurrent neural networks are shown to be capable of generating minimum stable driving joint torques. In addition, the driving joint torques computed by the primal-dual network are shown never exceeding the joint torque limits.

摘要

本文提出了两种用于运动学冗余机械手实时关节扭矩优化的神经网络方法。分别提出了两种递归神经网络,用于确定在不考虑和考虑关节扭矩限制情况下冗余机械手的最小驱动关节扭矩。第一个神经网络称为拉格朗日网络,第二个称为原始对偶网络。在这两种基于神经网络的计算方案中,当将特定任务的末端执行器期望加速度作为输入提供给神经网络时,会生成最小驱动关节扭矩信号作为输出,以驱动机械手手臂。所提出的两种递归神经网络都能够生成最小稳定驱动关节扭矩。此外,由原始对偶网络计算出的驱动关节扭矩从未超过关节扭矩限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验