Tang W S, Wang J
Dept. of Autom. & Comput.-Aided Eng., Chinese Univ. of Hong Kong, Shatin.
IEEE Trans Syst Man Cybern B Cybern. 2001;31(1):98-105. doi: 10.1109/3477.907567.
This paper presents an improved neural computation where scheme for kinematic control of redundant manipulators based on infinity-norm joint velocity minimization. Compared with a previous neural network approach to minimum infinity-non kinematic control, the present approach is less complex in terms of cost of architecture. The recurrent neural network explicitly minimizes the maximum component of the joint velocity vector while tracking a desired end-effector trajectory. The end-effector velocity vector for a given task is fed into the neural network from its input and the minimum infinity-norm joint velocity vector is generated at its output instantaneously. Analytical results are given to substantiate the asymptotic stability of the recurrent neural network. The simulation results of a four-degree-of-freedom planar robot arm and a seven-degree-of-freedom industrial robot are presented to show the proposed neural network can effectively compute the minimum infinity-norm solution to redundant manipulators.
本文提出了一种改进的神经计算方法,即基于无穷范数关节速度最小化的冗余机械手运动控制方案。与先前用于最小无穷范数运动控制的神经网络方法相比,本方法在架构成本方面复杂度更低。递归神经网络在跟踪期望的末端执行器轨迹时,明确地将关节速度向量的最大分量最小化。给定任务的末端执行器速度向量从其输入馈入神经网络,并在其输出端即时生成最小无穷范数关节速度向量。给出了分析结果以证实递归神经网络的渐近稳定性。给出了一个四自由度平面机器人手臂和一个七自由度工业机器人的仿真结果,以表明所提出的神经网络能够有效地计算冗余机械手的最小无穷范数解。