Hwang M C, Hu X
Sch. of Inf. & Electr. Eng., Sydney Univ., NSW.
IEEE Trans Syst Man Cybern B Cybern. 2000;30(2):310-21. doi: 10.1109/3477.836379.
A new robust learning controller for simultaneous position and force control of uncertain constrained manipulators is presented. Using models of the manipulator dynamics and environmental constraint, a task-space reduced-order position dynamics and an algebraic description for the interacting force between the manipulator and its environment are constructed. Based on this treatment, the robust nonlinear Hinfinity control approach and direct adaptive neural network (NN) technique are then integrated together. The role of NN devices is to adaptively learn those manipulators' structured/unstructured uncertain dynamics as well as the uncertainties with environmental modelling. Then, the effects on tracking performance attributable to the approximation errors of NN devices are attenuated to a prescribed level by the embedded nonlinear Hinfinity control. Whenever the adopted NN devices have the potential to effectively approximate those nonlinear mappings which are to be learned, then this new control scheme can be ultimately less conservative than its counterpart Hinfinity only position/force tracking control scheme. This is shown analytically in the form of theorem. Finally, a simulation study for a constrained two-link planar manipulator is given. Simulation results indicate that the proposed adaptive Hinfinity NN position/force tracking controller performs better in both force and position tracking tasks than its counterpart Hinfinity only position/force tracking control scheme.
提出了一种用于不确定约束机器人同时进行位置和力控制的新型鲁棒学习控制器。利用机器人动力学模型和环境约束,构建了任务空间降阶位置动力学以及机器人与其环境之间相互作用力的代数描述。基于此处理,将鲁棒非线性Hinfinity控制方法与直接自适应神经网络(NN)技术集成在一起。神经网络装置的作用是自适应学习机器人的结构化/非结构化不确定动力学以及环境建模中的不确定性。然后,通过嵌入式非线性Hinfinity控制将神经网络装置近似误差对跟踪性能的影响衰减到规定水平。只要所采用的神经网络装置有潜力有效近似待学习的那些非线性映射,那么这种新的控制方案最终可能比仅采用Hinfinity的位置/力跟踪控制方案保守性更低。这在定理形式中得到了分析证明。最后,给出了一个受约束两连杆平面机器人的仿真研究。仿真结果表明,所提出的自适应Hinfinity神经网络位置/力跟踪控制器在力和位置跟踪任务中比仅采用Hinfinity的位置/力跟踪控制方案表现更好。