Suppr超能文献

一种针对时变约束可重构机器人的新型混合力/位置控制方法。

A new hybrid force/position control approach for time-varying constrained reconfigurable manipulators.

作者信息

Kumar Naveen, Rani Manju

机构信息

Department of Mathematics, National Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India.

Department of Mathematics, National Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India.

出版信息

ISA Trans. 2021 Apr;110:138-147. doi: 10.1016/j.isatra.2020.10.046. Epub 2020 Oct 18.

Abstract

In this manuscript, a new hybrid force/position control approach has been proposed for time-varying constrained reconfigurable manipulators. In order to design the controller, firstly a reduced-order dynamic model of time-varying constrained manipulator system is presented. The uncertainties in the dynamical model of the system are inevitable; therefore the model-based control approach is inadequate to handle these systems. Therefore, inspired by this consideration, whatsoever partial information is available about the dynamics of the system, have been used for controller design purpose. The model-dependent control scheme is integrated with the neural network-based model-free control scheme. Radial basis function neural network is used for the estimation of the unknown dynamics of the system. Next, to overcome the aftereffects of the friction terms and neural network reconstruction error, an adaptive compensator is added to the part of the controller. For the stability analysis of the presented control scheme, the Lyapunov theorem and Barbalat's lemma are utilized. The designed control scheme guarantees that tracking errors of the joints and the force tracking error remain inside the desired levels and the joint tracking errors converge to zero asymptotically. Finally, comparative computer simulations show the superiority and the applicability of the developed control method applied over a 2-DOF time-varying constrained reconfigurable manipulator.

摘要

在本手稿中,针对时变约束可重构机器人提出了一种新的混合力/位置控制方法。为了设计控制器,首先给出了时变约束机器人系统的降阶动力学模型。系统动力学模型中的不确定性是不可避免的;因此基于模型的控制方法不足以处理这些系统。因此,受此考虑启发,无论关于系统动力学有何种部分信息,都被用于控制器设计目的。将基于模型的控制方案与基于神经网络的无模型控制方案相结合。使用径向基函数神经网络来估计系统的未知动力学。接下来,为了克服摩擦项和神经网络重构误差的后效,在控制器部分添加了自适应补偿器。对于所提出的控制方案的稳定性分析,利用了李雅普诺夫定理和巴尔巴拉特引理。所设计的控制方案保证关节的跟踪误差和力跟踪误差保持在期望水平内,并且关节跟踪误差渐近收敛到零。最后,对比计算机仿真表明了所开发的控制方法应用于两自由度时变约束可重构机器人的优越性和适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验