Suppr超能文献

Mos 3'非翻译区的调控差异是卵母细胞成熟过程中Mos mRNA胞质多聚腺苷酸化和翻译募集的物种特异性时间模式的基础。

Mos 3' UTR regulatory differences underlie species-specific temporal patterns of Mos mRNA cytoplasmic polyadenylation and translational recruitment during oocyte maturation.

作者信息

Prasad C Krishna, Mahadevan Mahendran, MacNicol Melanie C, MacNicol Angus M

机构信息

Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.

出版信息

Mol Reprod Dev. 2008 Aug;75(8):1258-68. doi: 10.1002/mrd.20877.

Abstract

The Mos proto-oncogene is a critical regulator of vertebrate oocyte maturation. The maturation-dependent translation of Mos protein correlates with the cytoplasmic polyadenylation of the maternal Mos mRNA. However, the precise temporal requirements for Mos protein function differ between oocytes of model mammalian species and oocytes of the frog Xenopus laevis. Despite the advances in model organisms, it is not known if the translation of the human Mos mRNA is also regulated by cytoplasmic polyadenylation or what regulatory elements may be involved. We report that the human Mos 3' untranslated region (3' UTR) contains a functional cytoplasmic polyadenylation element (CPE) and demonstrate that the endogenous Mos mRNA undergoes maturation-dependent cytoplasmic polyadenylation in human oocytes. The human Mos 3' UTR interacts with the human CPE-binding protein and exerts translational control on a reporter mRNA in the heterologous Xenopus oocyte system. Unlike the Xenopus Mos mRNA, which is translationally activated by an early acting Musashi/polyadenylation response element (PRE)-directed control mechanism, the translational activation of the human Mos 3' UTR is dependent on a late acting CPE-dependent process. Taken together, our findings suggest a fundamental difference in the 3' UTR regulatory mechanisms controlling the temporal induction of maternal Mos mRNA polyadenylation and translational activation during Xenopus and mammalian oocyte maturation.

摘要

Mos原癌基因是脊椎动物卵母细胞成熟的关键调节因子。Mos蛋白的成熟依赖性翻译与母体Mos mRNA的细胞质聚腺苷酸化相关。然而,模型哺乳动物物种的卵母细胞与非洲爪蟾的卵母细胞对Mos蛋白功能的精确时间要求有所不同。尽管在模式生物方面取得了进展,但尚不清楚人类Mos mRNA的翻译是否也受细胞质聚腺苷酸化调节,以及可能涉及哪些调节元件。我们报告称,人类Mos 3'非翻译区(3'UTR)包含一个功能性细胞质聚腺苷酸化元件(CPE),并证明内源性Mos mRNA在人类卵母细胞中经历成熟依赖性细胞质聚腺苷酸化。人类Mos 3'UTR与人类CPE结合蛋白相互作用,并在异源爪蟾卵母细胞系统中对报告基因mRNA施加翻译控制。与通过早期作用的武藏/聚腺苷酸化反应元件(PRE)导向的控制机制激活翻译的爪蟾Mos mRNA不同,人类Mos 3'UTR的翻译激活依赖于晚期作用的CPE依赖性过程。综上所述,我们的研究结果表明,在爪蟾和哺乳动物卵母细胞成熟过程中,控制母体Mos mRNA聚腺苷酸化和翻译激活时间诱导的3'UTR调节机制存在根本差异。

相似文献

3
A novel mRNA 3' untranslated region translational control sequence regulates Xenopus Wee1 mRNA translation.
Dev Biol. 2008 May 15;317(2):454-66. doi: 10.1016/j.ydbio.2008.02.033. Epub 2008 Feb 29.
4
Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation.
EMBO J. 2006 Jun 21;25(12):2792-801. doi: 10.1038/sj.emboj.7601159. Epub 2006 Jun 8.
5
XGef is a CPEB-interacting protein involved in Xenopus oocyte maturation.
Dev Biol. 2003 Mar 15;255(2):383-98. doi: 10.1016/s0012-1606(02)00089-1.
9
Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA.
Nature. 2000 Mar 16;404(6775):302-7. doi: 10.1038/35005126.

引用本文的文献

1
Biallelic mutations in MOS cause female infertility characterized by human early embryonic arrest and fragmentation.
EMBO Mol Med. 2021 Dec 7;13(12):e14887. doi: 10.15252/emmm.202114887. Epub 2021 Nov 15.
2
CNOT6 regulates a novel pattern of mRNA deadenylation during oocyte meiotic maturation.
Sci Rep. 2018 May 1;8(1):6812. doi: 10.1038/s41598-018-25187-0.
3
Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events.
Hum Reprod Update. 2018 May 1;24(3):245-266. doi: 10.1093/humupd/dmx040.
4
Efficient translation of Dnmt1 requires cytoplasmic polyadenylation and Musashi binding elements.
PLoS One. 2014 Feb 20;9(2):e88385. doi: 10.1371/journal.pone.0088385. eCollection 2014.
5
DNA-PK target identification reveals novel links between DNA repair signaling and cytoskeletal regulation.
PLoS One. 2013 Nov 25;8(11):e80313. doi: 10.1371/journal.pone.0080313. eCollection 2013.
6
Bioinformatic identification of novel elements potentially involved in messenger RNA fate control during spermatogenesis.
Biol Reprod. 2012 Dec 13;87(6):138. doi: 10.1095/biolreprod.112.102434. Print 2012 Jun.
7
Mos in the oocyte: how to use MAPK independently of growth factors and transcription to control meiotic divisions.
J Signal Transduct. 2011;2011:350412. doi: 10.1155/2011/350412. Epub 2010 Dec 19.
8
Enforcing temporal control of maternal mRNA translation during oocyte cell-cycle progression.
EMBO J. 2010 Jan 20;29(2):387-97. doi: 10.1038/emboj.2009.337. Epub 2009 Dec 3.

本文引用的文献

1
In-vitro maturation of oocytes: biological aspects.
Reprod Biomed Online. 2006 Sep;13(3):437-46. doi: 10.1016/s1472-6483(10)61450-2.
2
Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation.
EMBO J. 2006 Jun 21;25(12):2792-801. doi: 10.1038/sj.emboj.7601159. Epub 2006 Jun 8.
3
Function of RNA-binding protein Musashi-1 in stem cells.
Exp Cell Res. 2005 Jun 10;306(2):349-56. doi: 10.1016/j.yexcr.2005.02.021. Epub 2005 Mar 24.
4
UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs.
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D141-6. doi: 10.1093/nar/gki021.
5
In-vitro maturation of human oocytes.
Reprod Biomed Online. 2004 Feb;8(2):148-66. doi: 10.1016/s1472-6483(10)60511-1.
7
Mos is not required for the initiation of meiotic maturation in Xenopus oocytes.
EMBO J. 2002 Aug 1;21(15):4026-36. doi: 10.1093/emboj/cdf400.
10
cAMP-Dependent PKA negatively regulates polyadenylation of c-mos mRNA in rat oocytes.
Mol Endocrinol. 2002 Feb;16(2):331-41. doi: 10.1210/mend.16.2.0767.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验