Rusu Catalin F, Lanig Harald, Othersen Olaf G, Kryschi Carola, Clark Timothy
Computer-Chemie-Centrum der Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany.
J Phys Chem B. 2008 Feb 28;112(8):2445-55. doi: 10.1021/jp075372+. Epub 2008 Feb 5.
In recent decades, new less-invasive, nonlinear optical methods have been proposed and optimized for monitoring fast physiological processes in biological cells. One of these methods allows the action potential (AP) in cardiomyocytes or neurons to be monitored by means of second-harmonic generation (SHG). We now present the first, to our knowledge, simulations of the dependency of the intensity of the second harmonic (I(SHG)) on variations of the transmembrane potential (TMP) in a cardiomyocyte during an action potential (AP). For this, an amphiphilic potential-sensitive styryl dye molecule with nonlinear optical properties was embedded in a dipalmitoylphosphatidylcholine (DPPC) bilayer, replacing one of the phospholipid molecules. External electrical fields with different strengths were applied across the membrane to simulate the AP of a heart-muscle cell. We used a combined classical/quantum mechanical approach to model the structure and the spectroscopic properties of the embedded chromophore. Two 10 ns molecular dynamics (MD) simulations provided input geometries for semiempirical molecular orbital (QM/MM) single-point configuration interaction (CI) calculations, which were used to calculate the wavelengths and oscillator strengths of electronic transitions in the di-8-ANEPPS dye molecule. The results were then used in a sum-over-states treatment to calculate the second-order hyperpolarizability. The square of the hyperpolarizability scales with the intensity of the second harmonic, which is used to monitor the action potentials of cardiomyocytes experimentally. Thus, we computed changes in the intensity of the second harmonic (DeltaI(SHG)) as function of TMP changes. Our results agree well with experimental measurements.
近几十年来,人们提出并优化了新的非侵入性非线性光学方法,用于监测生物细胞中的快速生理过程。其中一种方法可以通过二次谐波产生(SHG)来监测心肌细胞或神经元中的动作电位(AP)。据我们所知,我们现在首次给出了在动作电位(AP)期间心肌细胞中二次谐波强度(I(SHG))对跨膜电位(TMP)变化的依赖性模拟。为此,将一种具有非线性光学特性的两亲性电位敏感苯乙烯基染料分子嵌入二棕榈酰磷脂酰胆碱(DPPC)双层中,取代其中一个磷脂分子。在膜上施加不同强度的外部电场,以模拟心肌细胞的动作电位。我们采用经典/量子力学相结合的方法来模拟嵌入发色团的结构和光谱性质。两次10纳秒的分子动力学(MD)模拟为半经验分子轨道(QM/MM)单点构型相互作用(CI)计算提供了输入几何结构,该计算用于计算二-8-ANEPPS染料分子中电子跃迁的波长和振子强度。然后将结果用于态叠加处理,以计算二阶超极化率。超极化率的平方与二次谐波强度成比例,二次谐波强度在实验中用于监测心肌细胞的动作电位。因此,我们计算了二次谐波强度的变化(DeltaI(SHG))作为TMP变化的函数。我们的结果与实验测量结果吻合良好。