Luo Meng-Bo
Department of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China.
J Chem Phys. 2008 Jan 28;128(4):044912. doi: 10.1063/1.2826372.
The critical adsorption of self-avoiding polymer chain in a simple cubic lattice onto a flat surface is studied with Monte Carlo simulations. The dependence of number of surface contacts M on chain length N and polymer-surface interaction epsilon is investigated by a finite-size scaling approach. We estimate the critical adsorption point epsilon(c)=0.291+/-0.002 and the exponent phi=0.54+/-0.01. The asymptotic behaviors M proportional variant N for epsilon>>epsilon(c) and M proportional variant N(0) for epsilon<<epsilon(c) are also obtained from the finite-size scaling relation. We have also estimated the critical adsorption point by using Binder's cumulant method as well as configurational properties.
通过蒙特卡罗模拟研究了简单立方晶格中自回避聚合物链在平面上的临界吸附。采用有限尺寸标度方法研究了表面接触数(M)对链长(N)和聚合物 - 表面相互作用(\epsilon)的依赖性。我们估计临界吸附点(\epsilon(c)=0.291\pm0.002)以及指数(\phi = 0.54\pm0.01)。还从有限尺寸标度关系中得到了(\epsilon\gg\epsilon(c))时(M)与(N)成正比以及(\epsilon\ll\epsilon(c))时(M)与(N(0))成正比的渐近行为。我们还使用Binder累积量方法以及构型性质估计了临界吸附点。