Klushin Leonid I, Polotsky Alexey A, Hsu Hsiao-Ping, Markelov Denis A, Binder Kurt, Skvortsov Alexander M
Department of Physics, American University of Beirut, P. O. Box 11-0236, Beirut 1107 2020, Lebanon.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):022604. doi: 10.1103/PhysRevE.87.022604. Epub 2013 Feb 27.
We investigate the effects of the range of adsorption potential on the equilibrium behavior of a single polymer chain end-attached to a solid surface. The exact analytical theory for ideal lattice chains interacting with a planar surface via a box potential of depth U and width W is presented and compared to continuum model results and to Monte Carlo (MC) simulations using the pruned-enriched Rosenbluth method for self-avoiding chains on a simple cubic lattice. We show that the critical value U(c) corresponding to the adsorption transition scales as W(-1/ν), where the exponent ν=1/2 for ideal chains and ν≈3/5 for self-avoiding walks. Lattice corrections for finite W are incorporated in the analytical prediction of the ideal chain theory U(c)≈(π(2)/24)(W+1/2)(-2) and in the best-fit equation for the MC simulation data U(c)=0.585(W+1/2)(-5/3). Tail, loop, and train distributions at the critical point are evaluated by MC simulations for 1≤W≤10 and compared to analytical results for ideal chains and with scaling theory predictions. The behavior of a self-avoiding chain is remarkably close to that of an ideal chain in several aspects. We demonstrate that the bound fraction θ and the related properties of finite ideal and self-avoiding chains can be presented in a universal reduced form: θ(N,U,W)=θ(NU(c),U/U(c)). By utilizing precise estimations of the critical points we investigate the chain length dependence of the ratio of the normal and lateral components of the gyration radius. Contrary to common expectations this ratio attains a limiting universal value <R(g[perpendicular])(2)>/<R(g[parallel])(2)>=0.320±0.003 only at N~5000. Finite-N corrections for this ratio turn out to be of the opposite sign for W=1 and for W≥2. We also study the N dependence of the apparent crossover exponent φ(eff)(N). Strong corrections to scaling of order N(-0.5) are observed, and the extrapolated value φ=0.483±0.003 is found for all values of W. The strong correction to scaling effects found here explain why for smaller values of N, as used in most previous work, misleadingly large values of φ(eff)(N) were identified as the asymptotic value for the crossover exponent.
我们研究了吸附势范围对一端附着在固体表面的单个聚合物链平衡行为的影响。提出了理想晶格链通过深度为U、宽度为W的箱形势与平面相互作用的精确解析理论,并将其与连续介质模型结果以及使用修剪富集罗森布鲁斯方法对简单立方晶格上的自回避链进行的蒙特卡罗(MC)模拟结果进行了比较。我们表明,对应于吸附转变的临界值U(c)按W^(-1/ν)缩放,其中理想链的指数ν = 1/2,自回避行走的指数ν≈3/5。有限W的晶格校正被纳入理想链理论U(c)≈(π²/24)(W + 1/2)^(-2)的解析预测以及MC模拟数据的最佳拟合方程U(c)=0.585(W + 1/2)^(-5/3)中。通过MC模拟评估了1≤W≤10时临界点处的尾、环和链段分布,并与理想链的解析结果以及标度理论预测进行了比较。自回避链的行为在几个方面与理想链的行为非常接近。我们证明,有限理想链和自回避链的束缚分数θ及相关性质可以用通用的约化形式表示:θ(N,U,W)=θ(NU(c),U/U(c))。通过利用临界点的精确估计,我们研究了回转半径法向和横向分量之比的链长依赖性。与通常的预期相反,仅在N~5000时,该比值才达到极限通用值<R(g⊥)²>/<R(g∥)²>=0.320±0.003。对于该比值,有限N校正对于W = 1和W≥2的情况结果符号相反。我们还研究了表观交叉指数φ(eff)(N)的N依赖性。观察到对N^(-0.5)阶标度的强校正,并且对于所有W值都发现外推值φ = 0.483±0.003。此处发现的对标度效应的强校正解释了为什么在大多数先前工作中使用的较小N值情况下,误导性地将φ(eff)(N)的大值确定为交叉指数的渐近值。