Suppr超能文献

自适应阈值调制用于误差扩散半色调。

Adaptive threshold modulation for error diffusion halftoning.

机构信息

The University of Texas, Austin, TX 78712, USA.

出版信息

IEEE Trans Image Process. 2001;10(1):104-16. doi: 10.1109/83.892447.

Abstract

Grayscale digital image halftoning quantizes each pixel to one bit. In error diffusion halftoning, the quantization error at each pixel is filtered and fed back to the input in order to diffuse the quantization error among the neighboring grayscale pixels. Error diffusion introduces nonlinear distortion (directional artifacts), linear distortion (sharpening), and additive noise. Threshold modulation, which alters the quantizer input, has been previously used to reduce either directional artifacts or linear distortion. This paper presents an adaptive threshold modulation framework to improve halftone quality by optimizing error diffusion parameters in the least squares sense. The framework models the quantizer implicitly, so a wide variety of quantizers may be used. Based on the framework, we derive adaptive algorithms to optimize 1) edge enhancement halftoning and 2) green noise halftoning. In edge enhancement halftoning, we minimize linear distortion by controlling the sharpening control parameter. We may also break up directional artifacts by replacing the thresholding quantizer with a deterministic bit flipping (DBF) quantizer. For green noise halftoning, we optimize the hysteresis coefficients.

摘要

灰度数字图像半色调将每个像素量化为一位。在误差扩散半色调中,每个像素的量化误差被滤波并反馈到输入中,以在相邻灰度像素之间扩散量化误差。误差扩散会引入非线性失真(方向伪像)、线性失真(锐化)和附加噪声。阈值调制改变了量化器的输入,以前曾被用来减少方向伪像或线性失真。本文提出了一种自适应阈值调制框架,通过最小二乘意义上优化误差扩散参数来提高半色调质量。该框架隐式地对量化器进行建模,因此可以使用多种不同的量化器。基于该框架,我们推导出了两种自适应算法,分别用于优化 1)边缘增强半色调和 2)绿色噪声半色调。在边缘增强半色调中,我们通过控制锐化控制参数来最小化线性失真。我们还可以通过用确定性位翻转(DBF)量化器替换阈值量化器来打破方向伪像。对于绿色噪声半色调,我们优化了迟滞系数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验