Suppr超能文献

误差扩散中累积扩散误差的量化

Quantization of accumulated diffused errors in error diffusion.

作者信息

Chang Ti-Chiun, Allebach Jan P

机构信息

Siemens Corporate Research, Inc., Princeton, NJ 08540, USA.

出版信息

IEEE Trans Image Process. 2005 Dec;14(12):1960-76. doi: 10.1109/tip.2005.859372.

Abstract

Due to its high image quality and moderate computational complexity, error diffusion is a popular halftoning algorithm for use with inkjet printers. However, error diffusion is an inherently serial algorithm that requires buffering a full row of accumulated diffused error (ADE) samples. For the best performance when the algorithm is implemented in hardware, the ADE data should be stored on the chip on which the error diffusion algorithm is implemented. However, this may result in an unacceptable hardware cost. In this paper, we examine the use of quantization of the ADE to reduce the amount of data that must be stored. We consider both uniform and nonuniform quantizers. For the nonuniform quantizers, we build on the concept of tone-dependency in error diffusion, by proposing several novel feature-dependent quantizers that yield improved image quality at a given bit rate, compared to memoryless quantizers. The optimal design of these quantizers is coupled with the design of the tone-dependent parameters associated with error diffusion. This is done via a combination of the classical Lloyd-Max algorithm and the training framework for tone-dependent error diffusion. Our results show that 4-bit uniform quantization of the ADE yields the same halftone quality as error diffusion without quantization of the ADE. At rates that vary from 2 to 3 bits per pixel, depending on the selectivity of the feature on which the quantizer depends, the feature-dependent quantizers achieve essentially the same quality as 4-bit uniform quantization.

摘要

由于其高图像质量和适度的计算复杂度,误差扩散是一种常用于喷墨打印机的半色调算法。然而,误差扩散是一种固有的串行算法,需要缓冲一整行累积的扩散误差(ADE)样本。为了在硬件中实现该算法时获得最佳性能,ADE数据应存储在实现误差扩散算法的芯片上。然而,这可能会导致不可接受的硬件成本。在本文中,我们研究了使用ADE量化来减少必须存储的数据量。我们考虑了均匀量化器和非均匀量化器。对于非均匀量化器,我们基于误差扩散中的色调依赖性概念,提出了几种新颖的基于特征的量化器,与无记忆量化器相比,在给定比特率下能产生更高的图像质量。这些量化器的优化设计与与误差扩散相关的色调依赖参数的设计相结合。这是通过经典的Lloyd-Max算法和色调依赖误差扩散的训练框架相结合来完成的。我们的结果表明,ADE的4位均匀量化产生的半色调质量与未对ADE进行量化的误差扩散相同。根据量化器所依赖特征的选择性,在每像素2到3比特的速率下,基于特征的量化器实现的质量与4位均匀量化基本相同。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验