Suppr超能文献

基于多尺度分割的无损图像压缩。

Lossless image compression with multiscale segmentation.

机构信息

Multimedia Department, IBM Research, Yorktown Heights, NY 10598, USA.

出版信息

IEEE Trans Image Process. 2002;11(11):1228-37. doi: 10.1109/TIP.2002.804528.

Abstract

This paper is concerned with developing a lossless image compression method which employs an optimal amount of segmentation information to exploit spatial redundancies inherent in image data. Multiscale segmentation is obtained using a previously proposed transform which provides a tree-structured segmentation of the image into regions characterized by grayscale homogeneity. In the proposed algorithm we prune the tree to control the size and number of regions thus obtaining a rate-optimal balance between the overhead inherent in coding the segmented data and the coding gain that we derive from it. Another novelty of the proposed approach is that we use an image model comprising separate descriptions of pixels lying near the edges of a region and those lying in the interior. Results show that the proposed algorithm can provide performance comparable to the best available methods and 15-20% better compression when compared with the JPEG lossless compression standard for a wide range of images.

摘要

本文致力于开发一种无损图像压缩方法,该方法利用最佳数量的分割信息来利用图像数据中固有的空间冗余。多尺度分割是通过先前提出的变换获得的,该变换提供了将图像分割成具有灰度均匀性的区域的树状结构。在提出的算法中,我们修剪树以控制区域的大小和数量,从而在对分段数据进行编码所固有的开销和我们从中获得的编码增益之间取得最佳的速率平衡。所提出方法的另一个新颖之处在于,我们使用包含位于区域边缘附近的像素和位于区域内部的像素的单独描述的图像模型。结果表明,所提出的算法可以提供与现有最佳方法相当的性能,并且与 JPEG 无损压缩标准相比,在广泛的图像中可以提供 15-20%更好的压缩。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验