Simon Fraser University, Burnaby, BC, Canada.
IEEE Trans Image Process. 2002;11(9):985-96. doi: 10.1109/TIP.2002.802529.
We test a number of the leading computational color constancy algorithms using a comprehensive set of images. These were of 33 different scenes under 11 different sources representative of common illumination conditions. The algorithms studied include two gray world methods, a version of the Retinex method, several variants of Forsyth's gamut-mapping method, Cardei et al.'s neural net method, and Finlayson et al.'s Color by Correlation method. We discuss a number of issues in applying color constancy ideas to image data, and study in depth the effect of different preprocessing strategies. We compare the performance of the algorithms on image data with their performance on synthesized data. All data used for this study are available online at http://www.cs.sfu.ca/(tilde)color/data, and implementations for most of the algorithms are also available (http://www.cs.sfu.ca/(tilde)color/code). Experiments with synthesized data (part one of this paper) suggested that the methods which emphasize the use of the input data statistics, specifically color by correlation and the neural net algorithm, are potentially the most effective at estimating the chromaticity of the scene illuminant. Unfortunately, we were unable to realize comparable performance on real images. Here exploiting pixel intensity proved to be more beneficial than exploiting the details of image chromaticity statistics, and the three-dimensional (3-D) gamut-mapping algorithms gave the best performance.
我们使用一套全面的图像来测试一些领先的计算颜色恒常性算法。这些图像来自 33 个不同的场景,涉及 11 种不同的光源,代表了常见的照明条件。研究的算法包括两种灰度世界方法、一种 Retinex 方法的版本、Forsyth 的色域映射方法的几个变体、Cardei 等人的神经网络方法以及 Finlayson 等人的颜色相关方法。我们讨论了将颜色恒常性思想应用于图像数据的一些问题,并深入研究了不同预处理策略的效果。我们比较了算法在图像数据上的性能与其在合成数据上的性能。本研究中使用的所有数据都可在 http://www.cs.sfu.ca/(tilde)color/data 上在线获得,并且大多数算法的实现也可在 http://www.cs.sfu.ca/(tilde)color/code 上获得。对合成数据的实验(本文的第一部分)表明,特别强调使用输入数据统计信息的方法,即颜色相关法和神经网络算法,在估计场景光源的色度方面可能是最有效的。不幸的是,我们无法在真实图像上实现可比的性能。在这里,利用像素强度比利用图像色度统计信息的细节更有益,并且三维(3-D)色域映射算法的性能最好。