Suppr超能文献

利用自然图像统计和场景语义实现颜色恒常性。

Color constancy using natural image statistics and scene semantics.

机构信息

Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2011 Apr;33(4):687-98. doi: 10.1109/TPAMI.2010.93.

Abstract

Existing color constancy methods are all based on specific assumptions such as the spatial and spectral characteristics of images. As a consequence, no algorithm can be considered as universal. However, with the large variety of available methods, the question is how to select the method that performs best for a specific image. To achieve selection and combining of color constancy algorithms, in this paper natural image statistics are used to identify the most important characteristics of color images. Then, based on these image characteristics, the proper color constancy algorithm (or best combination of algorithms) is selected for a specific image. To capture the image characteristics, the Weibull parameterization (e.g., grain size and contrast) is used. It is shown that the Weibull parameterization is related to the image attributes to which the used color constancy methods are sensitive. An MoG-classifier is used to learn the correlation and weighting between the Weibull-parameters and the image attributes (number of edges, amount of texture, and SNR). The output of the classifier is the selection of the best performing color constancy method for a certain image. Experimental results show a large improvement over state-of-the-art single algorithms. On a data set consisting of more than 11,000 images, an increase in color constancy performance up to 20 percent (median angular error) can be obtained compared to the best-performing single algorithm. Further, it is shown that for certain scene categories, one specific color constancy algorithm can be used instead of the classifier considering several algorithms.

摘要

现有的颜色恒常性方法都是基于图像的空间和光谱特征等特定假设。因此,没有一种算法可以被认为是通用的。然而,由于有各种各样的可用方法,问题是如何选择最适合特定图像的方法。为了实现颜色恒常性算法的选择和组合,本文利用自然图像统计来识别彩色图像最重要的特征。然后,根据这些图像特征,为特定的图像选择最合适的颜色恒常性算法(或最佳算法组合)。为了捕捉图像特征,使用了 Weibull 参数化(例如,粒度和对比度)。结果表明,Weibull 参数化与颜色恒常性方法敏感的图像属性有关。使用 MoG 分类器来学习 Weibull 参数和图像属性(边缘数量、纹理量和 SNR)之间的相关性和权重。分类器的输出是为特定图像选择表现最佳的颜色恒常性方法。实验结果表明,与最先进的单一算法相比,该方法有了很大的改进。在一个由超过 11000 张图像组成的数据集上,与表现最好的单一算法相比,可以获得高达 20%(中值角度误差)的颜色恒常性性能提高。此外,结果表明,对于某些场景类别,可以使用特定的颜色恒常性算法代替考虑几种算法的分类器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验