Suppr超能文献

用于广义作业车间调度的约束满足自适应神经网络与启发式相结合的方法

Constraint satisfaction adaptive neural network and heuristics combined approaches for generalized job-shop scheduling.

作者信息

Yang S, Wang D

机构信息

Department of Computer Science, King's College London, University of London, UK.

出版信息

IEEE Trans Neural Netw. 2000;11(2):474-86. doi: 10.1109/72.839016.

Abstract

This paper presents a constraint satisfaction adaptive neural network, together with several heuristics, to solve the generalized job-shop scheduling problem, one of NP-complete constraint satisfaction problems. The proposed neural network can be easily constructed and can adaptively adjust its weights of connections and biases of units based on the sequence and resource constraints of the job-shop scheduling problem during its processing. Several heuristics that can be combined with the neural network are also presented. In the combined approaches, the neural network is used to obtain feasible solutions, the heuristic algorithms are used to improve the performance of the neural network and the quality of the obtained solutions. Simulations have shown that the proposed neural network and its combined approaches are efficient with respect to the quality of solutions and the solving speed.

摘要

本文提出了一种约束满足自适应神经网络,并结合几种启发式算法,以解决广义作业车间调度问题,这是NP完全约束满足问题之一。所提出的神经网络易于构建,并且在处理过程中能够根据作业车间调度问题的顺序和资源约束自适应地调整其连接权重和单元偏差。还提出了几种可与神经网络相结合的启发式算法。在组合方法中,神经网络用于获得可行解,启发式算法用于提高神经网络的性能和所获得解的质量。仿真表明,所提出的神经网络及其组合方法在解的质量和求解速度方面是有效的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验