Suppr超能文献

用于自适应降噪的阈值神经网络。

Thresholding neural network for adaptive noise reduction.

作者信息

Zhang X P

机构信息

Department of Electrical and Computer Engineering, Ryerson Polytechnic University, Toronto, ON M5B 2K3, Canada.

出版信息

IEEE Trans Neural Netw. 2001;12(3):567-84. doi: 10.1109/72.925559.

Abstract

In the paper, a type of thresholding neural network (TNN) is developed for adaptive noise reduction. New types of soft and hard thresholding functions are created to serve as the activation function of the TNN. Unlike the standard thresholding functions, the new thresholding functions are infinitely differentiable. By using the new thresholding functions, some gradient-based learning algorithms become possible or more effective. The optimal solution of the TNN in a mean square error (MSE) sense is discussed. It is proved that there is at most one optimal solution for the soft-thresholding TNN. General optimal performances of both soft and hard thresholding TNNs are analyzed and compared to the linear noise reduction method. Gradient-based adaptive learning algorithms are presented to seek the optimal solution for noise reduction. The algorithms include supervised and unsupervised batch learning as well as supervised and unsupervised stochastic learning. It is indicated that the TNN with the stochastic learning algorithms can be used as a novel nonlinear adaptive filter. It is proved that the stochastic learning algorithm is convergent in certain statistical sense in ideal conditions. Numerical results show that the TNN is very effective in finding the optimal solutions of thresholding methods in an MSE sense and usually outperforms other noise reduction methods. Especially, it is shown that the TNN-based nonlinear adaptive filtering outperforms the conventional linear adaptive filtering in both optimal solution and learning performance.

摘要

本文中,开发了一种用于自适应降噪的阈值神经网络(TNN)。创建了新型的软阈值函数和硬阈值函数,用作TNN的激活函数。与标准阈值函数不同,新的阈值函数具有无穷可微性。通过使用新的阈值函数,一些基于梯度的学习算法变得可行或更有效。讨论了TNN在均方误差(MSE)意义下的最优解。证明了软阈值TNN最多有一个最优解。分析了软阈值和硬阈值TNN的一般最优性能,并与线性降噪方法进行了比较。提出了基于梯度的自适应学习算法来寻求降噪的最优解。这些算法包括有监督和无监督的批量学习以及有监督和无监督的随机学习。结果表明,采用随机学习算法的TNN可作为一种新型的非线性自适应滤波器。证明了随机学习算法在理想条件下在一定统计意义上是收敛的。数值结果表明,TNN在MSE意义下非常有效地找到阈值方法的最优解,并且通常优于其他降噪方法。特别是,结果表明基于TNN的非线性自适应滤波在最优解和学习性能方面均优于传统的线性自适应滤波。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验