Iyer M S, Wunsch D C
Dresser-Rand Control Systems, Houston, TX 77043, USA.
IEEE Trans Neural Netw. 2001;12(6):1433-44. doi: 10.1109/72.963778.
Traditionally, fed-batch biochemical process optimization and control uses complicated off-line optimizers, with no online model adaptation or re-optimization. This study demonstrates the applicability of a class of adaptive critic designs for online re-optimization and control of an aerobic fed-batch fermentor. Specifically, the performance of an entire class of adaptive critic designs, viz., heuristic dynamic programming, dual heuristic programming and generalized dual heuristic programming, was demonstrated to be superior to that of a heuristic random optimizer, on optimization of a fed-batch fermentor operation producing monoclonal antibodies.
传统上,分批补料生化过程的优化与控制使用复杂的离线优化器,不存在在线模型适配或重新优化。本研究证明了一类自适应评判设计在需氧分批补料发酵罐在线重新优化与控制中的适用性。具体而言,在对生产单克隆抗体的分批补料发酵罐操作进行优化时,已证明一整类自适应评判设计,即启发式动态规划、对偶启发式规划和广义对偶启发式规划,其性能优于启发式随机优化器。