Suppr超能文献

基于半定规划的GBSB神经联想记忆设计

Design of GBSB neural associative memories using semidefinite programming.

作者信息

Park J, Cho H, Park D

机构信息

Department of Control and Instrumentation Engineering, Korea University, Chochiwon, Chungnam, 339-800, Korea.

出版信息

IEEE Trans Neural Netw. 1999;10(4):946-50. doi: 10.1109/72.774268.

Abstract

This paper concerns reliable search for the optimally performing GBSB (generalized brain-state-in-a-box) neural associative memory given a set of prototype patterns to be stored as stable equilibrium points. First, we observe some new qualitative properties of the GBSB model. Next, we formulate the synthesis of GBSB neural associative memories as a constrained optimization problem. Finally, we convert the optimization problem into a semidefinite program (SDP), which can be solved efficiently by recently developed interior point methods. The validity of this approach is illustrated by a design example.

摘要

本文关注在给定一组要存储为稳定平衡点的原型模式的情况下,可靠地搜索性能最优的广义盒中脑状态(GBSB)神经联想记忆。首先,我们观察到GBSB模型的一些新的定性特性。接下来,我们将GBSB神经联想记忆的合成表述为一个约束优化问题。最后,我们将该优化问题转化为一个半定规划(SDP),它可以通过最近开发的内点法有效地求解。一个设计实例说明了这种方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验