Schölkopf B, Mika S, Burges C C, Knirsch P, Müller K R, Rätsch G, Smola A J
GMD FIRST, 12489 Berlin, Germany.
IEEE Trans Neural Netw. 1999;10(5):1000-17. doi: 10.1109/72.788641.
This paper collects some ideas targeted at advancing our understanding of the feature spaces associated with support vector (SV) kernel functions. We first discuss the geometry of feature space. In particular, we review what is known about the shape of the image of input space under the feature space map, and how this influences the capacity of SV methods. Following this, we describe how the metric governing the intrinsic geometry of the mapped surface can be computed in terms of the kernel, using the example of the class of inhomogeneous polynomial kernels, which are often used in SV pattern recognition. We then discuss the connection between feature space and input space by dealing with the question of how one can, given some vector in feature space, find a preimage (exact or approximate) in input space. We describe algorithms to tackle this issue, and show their utility in two applications of kernel methods. First, we use it to reduce the computational complexity of SV decision functions; second, we combine it with the Kernel PCA algorithm, thereby constructing a nonlinear statistical denoising technique which is shown to perform well on real-world data.
本文收集了一些旨在深化我们对与支持向量(SV)核函数相关的特征空间理解的观点。我们首先讨论特征空间的几何结构。特别地,我们回顾关于输入空间在特征空间映射下的像的形状的已知内容,以及这如何影响支持向量方法的容量。在此之后,我们以非齐次多项式核类为例,描述如何根据核来计算支配映射表面内在几何结构的度量,这类核常用于支持向量模式识别。然后,我们通过处理在给定特征空间中的某个向量时如何在输入空间中找到原像(精确的或近似的)这一问题,来讨论特征空间与输入空间之间的联系。我们描述了解决此问题的算法,并展示了它们在核方法的两个应用中的效用。首先,我们用它来降低支持向量决策函数的计算复杂度;其次,我们将其与核主成分分析(Kernel PCA)算法相结合,从而构建一种非线性统计去噪技术,该技术在实际数据上表现良好。