Suppr超能文献

从图灵模式中学习系统参数。

Learning system parameters from turing patterns.

作者信息

Schnörr David, Schnörr Christoph

机构信息

School of Life Sciences, Imperial College, London, UK.

Institute for Applied Mathematics, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany.

出版信息

Mach Learn. 2023;112(9):3151-3190. doi: 10.1007/s10994-023-06334-9. Epub 2023 Jun 13.

Abstract

The Turing mechanism describes the emergence of spatial patterns due to spontaneous symmetry breaking in reaction-diffusion processes and underlies many developmental processes. Identifying Turing mechanisms in biological systems defines a challenging problem. This paper introduces an approach to the prediction of Turing parameter values from observed Turing patterns. The parameter values correspond to a parametrized system of reaction-diffusion equations that generate Turing patterns as steady state. The Gierer-Meinhardt model with four parameters is chosen as a case study. A novel invariant pattern representation based on resistance distance histograms is employed, along with Wasserstein kernels, in order to cope with the highly variable arrangement of local pattern structure that depends on the initial conditions which are assumed to be unknown. This enables us to compute physically plausible distances between patterns, to compute clusters of patterns and, above all, model parameter prediction based on training data that can be generated by numerical model evaluation with random initial data: for small training sets, classical state-of-the-art methods including operator-valued kernels outperform neural networks that are applied to raw pattern data, whereas for large training sets the latter are more accurate. A prominent property of our approach is that only a pattern is required as input data for model parameter predicion. Excellent predictions are obtained for single parameter values and reasonably accurate results for jointly predicting all four parameter values.

摘要

图灵机制描述了反应扩散过程中由于自发对称破缺而产生的空间模式的出现,并且是许多发育过程的基础。在生物系统中识别图灵机制是一个具有挑战性的问题。本文介绍了一种从观察到的图灵模式预测图灵参数值的方法。这些参数值对应于一个参数化的反应扩散方程组,该方程组将图灵模式作为稳态生成。以具有四个参数的Gierer-Meinhardt模型为例进行研究。为了应对局部模式结构高度可变的排列,这种排列取决于假定未知的初始条件,我们采用了一种基于电阻距离直方图的新型不变模式表示法以及瓦瑟斯坦核。这使我们能够计算模式之间物理上合理的距离,计算模式簇,最重要的是,基于通过使用随机初始数据进行数值模型评估生成的训练数据进行模型参数预测:对于小训练集,包括算子值核在内的经典的最先进方法优于应用于原始模式数据的神经网络,而对于大训练集,后者更准确。我们方法的一个突出特性是,模型参数预测只需要一个模式作为输入数据。对于单个参数值可获得出色的预测,对于联合预测所有四个参数值可获得合理准确的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/589e/10415500/768ff8e16ee8/10994_2023_6334_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验