Suppr超能文献

论多维缩放与自组织映射的嵌入

On multidimensional scaling and the embedding of self-organising maps.

作者信息

Yin Hujun

机构信息

School of Electrical and Electronic Engineering, University of Manchester, Sackville Street, Manchester, M60 1QD, UK.

出版信息

Neural Netw. 2008 Mar-Apr;21(2-3):160-9. doi: 10.1016/j.neunet.2007.12.027. Epub 2007 Dec 27.

Abstract

The self-organising map (SOM) and its variant, visualisation induced SOM (ViSOM), have been known to yield similar results to multidimensional scaling (MDS). However, the exact connection has not been established. In this paper, a review on the SOM and its cost function and topological measures is provided first. We then examine the exact scaling effect of the SOM and ViSOM from their objective functions. The SOM is shown to produce a qualitative, nonmetric scaling, while the local distance-preserving ViSOM produces a quantitative or metric scaling. Their relationship with the principal manifold is also discussed. The SOM-based methods not only produce topological or metric scaling but also provide a principal manifold. Furthermore a growing ViSOM is proposed to aid the adaptive embedding of highly nonlinear manifolds. Examples and comparisons with other embedding methods such as Isomap and local linear embedding are also presented.

摘要

自组织映射(SOM)及其变体可视化诱导自组织映射(ViSOM),已知能产生与多维缩放(MDS)相似的结果。然而,确切的联系尚未确立。本文首先对SOM及其代价函数和拓扑度量进行综述。然后我们从它们的目标函数来研究SOM和ViSOM的确切缩放效应。结果表明,SOM产生定性的、非度量缩放,而局部距离保持的ViSOM产生定量的或度量缩放。还讨论了它们与主流形的关系。基于SOM的方法不仅产生拓扑或度量缩放,还提供一个主流形。此外,提出了一种不断增长的ViSOM来辅助高度非线性流形的自适应嵌入。还给出了示例,并与其他嵌入方法如等距映射(Isomap)和局部线性嵌入进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验