Figueiredo M T, Nowak R D
Inst. de Telecomunicacoes, Inst. Superior Tecnico, Lisbon.
IEEE Trans Image Process. 2001;10(9):1322-31. doi: 10.1109/83.941856.
The sparseness and decorrelation properties of the discrete wavelet transform have been exploited to develop powerful denoising methods. However, most of these methods have free parameters which have to be adjusted or estimated. In this paper, we propose a wavelet-based denoising technique without any free parameters; it is, in this sense, a "universal" method. Our approach uses empirical Bayes estimation based on a Jeffreys' noninformative prior; it is a step toward objective Bayesian wavelet-based denoising. The result is a remarkably simple fixed nonlinear shrinkage/thresholding rule which performs better than other more computationally demanding methods.
离散小波变换的稀疏性和去相关性特性已被用于开发强大的去噪方法。然而,这些方法中的大多数都有必须调整或估计的自由参数。在本文中,我们提出了一种没有任何自由参数的基于小波的去噪技术;从这个意义上说,它是一种“通用”方法。我们的方法使用基于杰弗里斯非信息先验的经验贝叶斯估计;这是朝着基于客观贝叶斯小波去噪迈出的一步。结果是一个非常简单的固定非线性收缩/阈值规则,其性能优于其他计算要求更高的方法。