Suppr超能文献

一种常见的网络架构可以有效地实现各种基于稀疏性的推理问题。

A common network architecture efficiently implements a variety of sparsity-based inference problems.

机构信息

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30363, USA.

出版信息

Neural Comput. 2012 Dec;24(12):3317-39. doi: 10.1162/NECO_a_00372. Epub 2012 Sep 12.

Abstract

The sparse coding hypothesis has generated significant interest in the computational and theoretical neuroscience communities, but there remain open questions about the exact quantitative form of the sparsity penalty and the implementation of such a coding rule in neurally plausible architectures. The main contribution of this work is to show that a wide variety of sparsity-based probabilistic inference problems proposed in the signal processing and statistics literatures can be implemented exactly in the common network architecture known as the locally competitive algorithm (LCA). Among the cost functions we examine are approximate l(p) norms (0 ≤ p ≤ 2), modified l(p)-norms, block-l1 norms, and reweighted algorithms. Of particular interest is that we show significantly increased performance in reweighted l1 algorithms by inferring all parameters jointly in a dynamical system rather than using an iterative approach native to digital computational architectures.

摘要

稀疏编码假说在计算神经科学和理论神经科学领域引起了广泛关注,但关于稀疏惩罚的确切定量形式以及在神经上合理的体系结构中实现这种编码规则,仍存在一些悬而未决的问题。这项工作的主要贡献在于表明,信号处理和统计学文献中提出的各种基于稀疏的概率推理问题,可以在称为局部竞争算法 (LCA) 的常见网络架构中精确实现。我们研究的成本函数包括近似 l(p) 范数 (0 ≤ p ≤ 2)、修改后的 l(p)-范数、块 l1 范数和重加权算法。特别有趣的是,我们通过在动态系统中联合推断所有参数,而不是使用数字计算体系结构固有的迭代方法,在重加权 l1 算法中显示出显著提高的性能。

相似文献

5
An architecture for adaptive algorithmic hybrids.一种自适应算法混合体的架构。
IEEE Trans Syst Man Cybern B Cybern. 2010 Jun;40(3):903-14. doi: 10.1109/TSMCB.2009.2033262. Epub 2009 Nov 13.
7
Optimal sparse approximation with integrate and fire neurons.最优稀疏逼近的积分点火神经元。
Int J Neural Syst. 2014 Aug;24(5):1440001. doi: 10.1142/S0129065714400012. Epub 2014 Mar 23.
9
Sparse multiple kernel learning for signal processing applications.稀疏多核学习在信号处理中的应用。
IEEE Trans Pattern Anal Mach Intell. 2010 May;32(5):788-98. doi: 10.1109/TPAMI.2009.98.

引用本文的文献

本文引用的文献

1
Convergence and rate analysis of neural networks for sparse approximation.神经网络在稀疏逼近中的收敛性和速率分析。
IEEE Trans Neural Netw Learn Syst. 2012 Sep;23(9):1377-89. doi: 10.1109/TNNLS.2012.2202400. Epub 2012 Jun 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验