Smieja F
Gesellschaft fur Math. und Datenverarbeitung mbH, St. Augustin.
IEEE Trans Neural Netw. 1996;7(1):97-106. doi: 10.1109/72.478395.
The Pandemonium system of reflective MINOS agents solves problems by automatic dynamic modularization of the input space. The agents contain feedforward neural networks which adapt using the backpropagation algorithm. We demonstrate the performance of Pandemonium on various categories of problems. These include learning continuous functions with discontinuities, separating two spirals, learning the parity function, and optical character recognition. It is shown how strongly the advantages gained from using a modularization technique depend on the nature of the problem. The superiority of the Pandemonium method over a single net on the first two test categories is contrasted with its limited advantages for the second two categories. In the first case the system converges quicker with modularization and is seen to lead to simpler solutions. For the second case the problem is not significantly simplified through flat decomposition of the input space, although convergence is still quicker.
反射式MINOS智能体的“喧嚣”系统通过对输入空间进行自动动态模块化来解决问题。这些智能体包含使用反向传播算法进行自适应的前馈神经网络。我们展示了“喧嚣”系统在各类问题上的性能。这些问题包括学习具有间断点的连续函数、分离两个螺旋线、学习奇偶函数以及光学字符识别。结果表明,使用模块化技术所获得的优势在很大程度上取决于问题的性质。“喧嚣”方法在前两类测试问题上相对于单个网络的优越性,与它在后两类问题上有限的优势形成了对比。在前一种情况下,系统通过模块化收敛得更快,并且得到的解决方案更简单。在后一种情况下,尽管收敛仍然更快,但通过对输入空间进行平面分解,问题并没有得到显著简化。