Suppr超能文献

用于识别完全无约束手写数字的神经网络分类器。

Neural-network classifiers for recognizing totally unconstrained handwritten numerals.

作者信息

Cho S B

机构信息

Dept. of Comput. Sci., Yonsei Univ., Seoul.

出版信息

IEEE Trans Neural Netw. 1997;8(1):43-53. doi: 10.1109/72.554190.

Abstract

Artificial neural networks have been recognized as a powerful tool for pattern classification problems, but a number of researchers have also suggested that straightforward neural-network approaches to pattern recognition are largely inadequate for difficult problems such as handwritten numeral recognition. In this paper, we present three sophisticated neural-network classifiers to solve complex pattern recognition problems: multiple multilayer perceptron (MLP) classifier, hidden Markov model (HMM)/MLP hybrid classifier, and structure-adaptive self-organizing map (SOM) classifier. In order to verify the superiority of the proposed classifiers, experiments were performed with the unconstrained handwritten numeral database of Concordia University, Montreal, Canada. The three methods have produced 97.35%, 96.55%, and 96.05% of the recognition rates, respectively, which are better than those of several previous methods reported in the literature on the same database.

摘要

人工神经网络已被公认为解决模式分类问题的强大工具,但也有许多研究人员指出,直接采用神经网络方法进行模式识别,在解决诸如手写数字识别等难题时,很大程度上是不够的。在本文中,我们提出了三种复杂的神经网络分类器来解决复杂的模式识别问题:多重多层感知器(MLP)分类器、隐马尔可夫模型(HMM)/MLP混合分类器和结构自适应自组织映射(SOM)分类器。为了验证所提出分类器的优越性,我们使用了加拿大蒙特利尔康考迪亚大学的无约束手写数字数据库进行实验。这三种方法的识别率分别为97.35%、96.55%和96.05%,优于文献中报道的在同一数据库上的几种先前方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验