Suppr超能文献

A neural network controller for systems with unmodeled dynamics with applications to wastewater treatment.

作者信息

Spall J C, Cristion J A

机构信息

Appl. Phys. Lab., Johns Hopkins Univ., Laurel, MD.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 1997;27(3):369-75. doi: 10.1109/3477.584945.

Abstract

This paper considers the use of neural networks (NN's) in controlling a nonlinear, stochastic system with unknown process equations. The approach here is based on using the output error of the system to train the NN controller without the need to assume or construct a separate model (NN or other type) for the unknown process dynamics. To implement such a direct adaptive control approach, it is required that connection weights in the NN be estimated while the system is being controlled. As a result of the feedback of the unknown process dynamics, however, it is not possible to determine the gradient of the loss function for use in standard (backpropagation-type) weight estimation algorithms. In principle, stochastic approximation algorithms in the standard (Kiefer-Wolfowitz) finite-difference form can be used for this weight estimation since they are based on gradient approximations from available system output errors. However, these algorithms will generally require a prohibitive number of observed system outputs. Therefore, this paper considers the use of a new stochastic approximation algorithm for this weight estimation, which is based on a "simultaneous perturbation" gradient approximation. It is shown that this algorithm can greatly enhance the efficiency over more standard stochastic approximation algorithms based on finite-difference gradient approximations. The approach is illustrated on a simulated wastewater treatment system with stochastic effects and nonstationary dynamics.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验