Suppr超能文献

一种动态胜者全得神经网络。

A dynamic K-winners-take-all neural network.

作者信息

Yang J F, Chen C M

机构信息

Dept. of Electr. Eng., Cheng Kung Univ., Tainan.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 1997;27(3):523-6. doi: 10.1109/3477.584959.

Abstract

In this paper, a dynamic K-winners-take-all (KWTA) neural network, which can quickly identify the K-winning neurons whose activations are larger than the remaining ones, is proposed and analyzed. For N competitors, the proposed KWTA network is composed of N feedforward hardlimit neurons and three feedback neurons, which are used to determine the dynamic threshold. From theoretical analysis and simulation results, we found that the convergence of the proposed KWTA network, which requires Log(2)(N+1) iterations in average to complete a KWTA process, is independent of K, the number of the desired winners, and faster than that of the existing KWTA networks.

摘要

本文提出并分析了一种动态胜者全得(KWTA)神经网络,它能够快速识别出激活值大于其他神经元的K个获胜神经元。对于N个竞争神经元,所提出的KWTA网络由N个前馈硬限幅神经元和三个反馈神经元组成,这三个反馈神经元用于确定动态阈值。从理论分析和仿真结果来看,我们发现所提出的KWTA网络的收敛性与期望获胜者的数量K无关,平均需要Log(2)(N + 1)次迭代来完成一个KWTA过程,并且其收敛速度比现有KWTA网络更快。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验