Suppr超能文献

一种用于高维空间中多输入多输出(MIMO)系统模型逼近的自适应模糊神经网络。

An adaptive fuzzy neural network for MIMO system model approximation in high-dimensional spaces.

作者信息

Chak C K, Feng G, Ma J

机构信息

Dept. of Syst. & Control, New South Wales Univ., Sydney, NSW.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 1998;28(3):436-46. doi: 10.1109/3477.678641.

Abstract

An adaptive fuzzy system implemented within the framework of neural network is proposed. The integration of the fuzzy system into a neural network enables the new fuzzy system to have learning and adaptive capabilities. The proposed fuzzy neural network can locate its rules and optimize its membership functions by competitive learning, Kalman filter algorithm and extended Kalman filter algorithms. A key feature of the new architecture is that a high dimensional fuzzy system can be implemented with fewer number of rules than the Takagi-Sugeno fuzzy systems. A number of simulations are presented to demonstrate the performance of the proposed system including modeling nonlinear function, operator's control of chemical plant, stock prices and bioreactor (multioutput dynamical system).

摘要

提出了一种在神经网络框架内实现的自适应模糊系统。将模糊系统集成到神经网络中,使新的模糊系统具有学习和自适应能力。所提出的模糊神经网络可以通过竞争学习、卡尔曼滤波算法和扩展卡尔曼滤波算法来定位其规则并优化其隶属函数。新架构的一个关键特性是,与高木-关野模糊系统相比,它可以用更少的规则实现高维模糊系统。给出了许多仿真结果,以证明所提出系统的性能,包括对非线性函数进行建模、操作人员对化工厂的控制、股票价格以及生物反应器(多输出动态系统)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验