Suppr超能文献

用于随机点定位的自动机学习与智能三级搜索

Automata learning and intelligent tertiary searching for stochastic point location.

作者信息

Oommen B J, Raghunath G

机构信息

Sch. of Comput. Sci., Carleton Univ., Ottawa, Ont.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 1998;28(6):947-54. doi: 10.1109/3477.735407.

Abstract

Consider the problem of a robot (learning mechanism or algorithm) attempting to locate a point on a line. The mechanism interacts with a random environment which essentially informs it, possibly erroneously, which way it should move. The first reported paper to solve this problem (Oommen 1997) presented a solution which operated in a discretized space. In this paper we present a new scheme by which the point can be learnt using a combination of various learning principles. The heart of the strategy involves performing a controlled random walk on the underlying space and then intelligently pruning the space using an adaptive tertiary search. The overall learning scheme is shown to be epsilon-optimal. Just as in the case of the results presented in Oommen (1997) the application of the solution in nonlinear optimization has been alluded to. In a typical optimization process the algorithm has to work its way toward the maximum (minimum) using local information. However, the crucial issue in these strategies is that of determining the parameter to be used in the optimization itself. If the parameter is too small the convergence is sluggish. On the other hand, if the parameter is too large, the system could erroneously converge or even oscillate. The strategy presented here can be utilized to determine the best parameter to be used in the optimization.

摘要

考虑一个机器人(学习机制或算法)试图在一条直线上定位一个点的问题。该机制与一个随机环境相互作用,这个环境本质上会告知它(可能有误)应该朝哪个方向移动。第一篇报道解决这个问题的论文(奥门1997年)提出了一种在离散空间中运行的解决方案。在本文中,我们提出了一种新的方案,通过结合各种学习原理来学习这个点。该策略的核心包括在基础空间上进行受控随机游走,然后使用自适应三分搜索智能地修剪空间。整体学习方案被证明是ε-最优的。正如奥门(1997年)所呈现的结果一样,该解决方案在非线性优化中的应用也被提及。在典型的优化过程中,算法必须利用局部信息朝着最大值(最小值)前进。然而,这些策略中的关键问题是确定在优化本身中要使用的参数。如果参数太小,收敛就会很缓慢。另一方面,如果参数太大,系统可能会错误地收敛甚至振荡。这里提出的策略可用于确定优化中要使用的最佳参数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验