Manohar M, Tilton J C
Dept. of Comput. Sci, Bowie State Univ., MD 20715, USA.
IEEE Trans Image Process. 1999;8(1):15-21. doi: 10.1109/83.736678.
Model-based vector quantization (MVQ) is introduced here as a variant of vector quantization (VQ). MVQ has the asymmetrical computational properties of conventional VQ, but does not require the use of pregenerated codebooks. This is a great advantage, since codebook generation is usually a computationally intensive process, and maintenance of codebooks for coding and decoding can pose difficulties. MVQ uses a simple mathematical model for mean removed errors combined with a human visual system model to generate parameterized codebooks. The error model parameter (lambda) is included with the compressed image as side information from which the same codebook is regenerated for decoding. As far as the user is concerned, MVQ is a codebookless VQ variant. After a brief introduction, the problems associated with codebook generation and maintenance are discussed. We then give a description of the MVQ algorithm, followed by an evaluation of the performance of MVQ on remotely sensed image data sets from NASA sources. The results obtained with MVQ are compared with other VQ techniques and JPEG/DCT. Finally, we demonstrate the performance of MVQ as a part of a progressive compression system suitable for use in an image archival and distribution installation.
基于模型的矢量量化(MVQ)作为矢量量化(VQ)的一种变体在此被引入。MVQ具有传统VQ的非对称计算特性,但不需要使用预先生成的码本。这是一个很大的优势,因为码本生成通常是一个计算密集型过程,并且用于编码和解码的码本维护可能会带来困难。MVQ使用一个简单的数学模型来处理去除均值后的误差,并结合人类视觉系统模型来生成参数化码本。误差模型参数(λ)作为辅助信息与压缩图像一起包含在内,通过它可以为解码重新生成相同的码本。就用户而言,MVQ是一种无码本的VQ变体。在进行简要介绍之后,将讨论与码本生成和维护相关的问题。然后我们对MVQ算法进行描述,接着评估MVQ在来自美国国家航空航天局(NASA)的遥感图像数据集上的性能。将MVQ获得的结果与其他VQ技术以及JPEG/DCT进行比较。最后,我们展示MVQ作为适用于图像存档和分发装置的渐进式压缩系统一部分的性能。