Tsai J C, Hsieh C H, Hsu T C
Dept. of Electr. Eng., Chinese Army Acad., Kaohsiung.
IEEE Trans Image Process. 2000;9(11):1825-36. doi: 10.1109/83.877206.
The picture quality of conventional memory vector quantization techniques is limited by their supercodebooks. This paper presents a new dynamic finite-state vector quantization (DFSVQ) algorithm which provides better quality than the best quality that the supercodebook can offer. The new DFSVQ exploits the global interblock correlation of image blocks instead of local correlation in conventional DFSVQs. For an input block, we search the closest block from the previously encoded data using the side-match technique. The closest block is then used as the prediction of the input block, or used to generate a dynamic codebook. The input block is encoded by the closest block, dynamic codebook or supercodebook. Searching for the closest block from the previously encoded data is equivalent to expand the codevector space; thus the picture quality achieved is not limited by the supercodebook. Experimental results reveal that the new DFSVQ reduces bit rate significantly and provides better visual quality, as compared to the basic VQ and other DFSVQs.
传统记忆矢量量化技术的图像质量受其超级码本的限制。本文提出了一种新的动态有限状态矢量量化(DFSVQ)算法,该算法提供的质量优于超级码本所能提供的最佳质量。新的DFSVQ利用图像块的全局块间相关性,而非传统DFSVQ中的局部相关性。对于输入块,我们使用侧边匹配技术从先前编码的数据中搜索最接近的块。然后,将最接近的块用作输入块的预测,或用于生成动态码本。输入块由最接近的块、动态码本或超级码本进行编码。从先前编码的数据中搜索最接近的块等同于扩展码矢量空间;因此,所实现的图像质量不受超级码本的限制。实验结果表明,与基本矢量量化和其他DFSVQ相比,新的DFSVQ显著降低了比特率并提供了更好的视觉质量。