Suppr超能文献

未校准传感器的信号子空间融合及其在合成孔径雷达和诊断医学中的应用。

Signal subspace fusion of uncalibrated sensors with application in SAR and diagnostic medicine.

作者信息

Soumekh M

出版信息

IEEE Trans Image Process. 1999;8(1):127-37. doi: 10.1109/83.736707.

Abstract

This correspondence addresses the problem of fusing the information content of two uncalibrated sensors. This problem arises in registering images of a scene when it is viewed via two different sensory systems, or detecting change in a scene when it is viewed at two different time points by a sensory system, or via two different sensory systems or observation channels. We are concerned with sensory systems which have not only a relative shift, scaling and rotational calibration error, but also an unknown point spread function (that is time varying for a single sensor, or different for two sensors). By modeling one image in terms of an unknown linear combination of the other image, its powers and their spatially transformed (shift, rotation and scaling) versions, a signal subspace processing is developed for fusing uncalibrated sensors. The proposed method is shown to be applicable in moving target detection (MTD) using monopulse synthetic aperture radar (SAR) with uncalibrated radars. Results are shown for video, magnetic resonance images of a human brain, moving target detector monopulse SAR, and registration of SAR images of a target obtained via two different radars or at different coordinates by the same radar for automatic target recognition (ATR).

摘要

本通信讨论了融合两个未校准传感器信息内容的问题。当通过两个不同的传感系统观察场景时,或者当传感系统在两个不同时间点观察场景时,或者通过两个不同的传感系统或观察通道观察场景时,在配准场景图像或检测场景变化时会出现这个问题。我们关注的传感系统不仅存在相对平移、缩放和旋转校准误差,还存在未知的点扩散函数(对于单个传感器是随时间变化的,或者对于两个传感器是不同的)。通过将一幅图像建模为另一幅图像、其幂次以及它们的空间变换(平移、旋转和缩放)版本的未知线性组合,开发了一种信号子空间处理方法来融合未校准的传感器。所提出的方法被证明适用于使用未校准雷达的单脉冲合成孔径雷达(SAR)进行运动目标检测(MTD)。给出了视频、人脑磁共振图像、运动目标检测器单脉冲SAR以及通过两个不同雷达或同一雷达在不同坐标获取的目标SAR图像用于自动目标识别(ATR)的配准结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验