Suppr超能文献

基于双变量伽马分布的多传感器合成孔径雷达图像变化检测

Change detection in multisensor SAR images using bivariate gamma distributions.

作者信息

Chatelain F, Tourneret J-Y, Inglada J

机构信息

IRIT/ENSEEIHT/TéSA, 31071 Toulouse cedex 7, France.

出版信息

IEEE Trans Image Process. 2008 Mar;17(3):249-58. doi: 10.1109/TIP.2008.916047.

Abstract

This paper studies a family of distributions constructed from multivariate gamma distributions to model the statistical properties of multisensor synthetic aperture radar (SAR) images. These distributions referred to as multisensor multivariate gamma distributions (MuMGDs) are potentially interesting for detecting changes in SAR images acquired by different sensors having different numbers of looks. The first part of this paper compares different estimators for the parameters of MuMGDs. These estimators are based on the maximum likelihood principle, the method of inference function for margins, and the method of moments. The second part of the paper studies change detection algorithms based on the estimated correlation coefficient of MuMGDs. Simulation results conducted on synthetic and real data illustrate the performance of these change detectors.

摘要

本文研究了一类由多元伽马分布构建的分布,用于对多传感器合成孔径雷达(SAR)图像的统计特性进行建模。这些分布被称为多传感器多元伽马分布(MuMGDs),对于检测由具有不同视数的不同传感器获取的SAR图像中的变化可能具有重要意义。本文的第一部分比较了MuMGDs参数的不同估计方法。这些估计方法基于最大似然原理、边际推断函数法和矩量法。本文的第二部分研究了基于MuMGDs估计相关系数的变化检测算法。对合成数据和真实数据进行的仿真结果说明了这些变化检测器的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验